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Abstract— MAVLink is a popular message protocol for small
Unmanned Aerial Vehicles (UAVs). In this work, we present a
Fault Detection and Isolation (FDI) framework for fixed-wing
UAVs which takes advantage of the information conveyed in
MAVLink telemetry streams and produces a bank of residual
generators. Structural Analysis is employed to systematically
handle the varying set of available measurements, identify
the observable faults and adjust the FDI system accordingly.
Structural detectability and isolability analyses are carried
out. A case-study on a real-life telemetry log of a UAV crash
demonstrates the efficacy of the proposed approach.

I. INTRODUCTION

As Unmanned Aerial Vehicles (UAVs) become an estab-
lished technology and provide a platform for other aspects
of research, their number grows steadily. Micro Air Vehi-
cles (MAVs), being handier and low-cost, are by far the
most populous category. A few autopilot software suites
have been established as the go-to options for attitude and
trajectory control of MAVs, within academic, research and
small business sectors. More often than not, one of the PX4
[1], ArduPilot [2] or Paparazzi [3] software is used.

On the other hand, while Fault Detection and Isolation
(FDI) is deemed a topic of utmost importance in the roadmap
for the integration of UAVs in the national air space [4], it has
not been populated with solutions which systematically cover
a wide class of its problems. Admittedly, UAV literature has
inherited the theoretical advances on fault diagnosis from
manned aviation, but such approaches are oriented towards
tailor-made systems, requiring significant investments in time
and money for integration and tuning and often have substan-
tial requirements in hardware [5]-[7].

These approaches are in stark contrast to the philosophy
of Micro Air Vehicles (MAV), which are designed to have
fast design iteration cycles and be cheap and expendable. In
these cases, most traditional fault diagnosis systems come
short in the aforementioned aspects.

Some of the more modern approaches to Fault Diagnosis
have utilized the telemetry stream that almost every MAV
emits. In [8], the measurements of airspeed, angular rates
and received control inputs have been used to detect faults
on the airspeed probe and control surfaces, through direct
comparison, parameter estimation and statistical processing.
More recently, in [9], maximum likelihood methods and
neural networks were applied on raw engine telemetry data
to perform fault diagnosis.
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Nevertheless, the above works do not take full advantage
of the existing underlying infrastructure and information
provided by MAVs. Notably, one of the most significant
and modern infrastructure is the MAVLink message protocol
[10]. MAVLink is an open-source, rigid specification for
message structure and content, tailor-made for the needs of
MAVs in telemetry, command and information exchange. It
was met with large acceptance and is now used exclusively
or at least supported by all the open-source autopilots and
many of the closed-source ones. To our best knowledge, no
previous work has explored the diagnostic potential of the
MAVLink protocol.

MAVLink specifies a very large set of measured quantities,
in the order of hundreds. Obviously, manually designing a di-
agnostic system around the arbitrary subset of measurements
each MAV emits is infeasible. Parity-based fault diagnosis
[11] offers appropriate methods to handle systems with high
numbers of equations, inputs and outputs; a system model is
explored systematically for redundant equations which form
residual generator functions, sensitive to faults.

One such methodology, Structural Analysis (SA) [12],
[13], is especially suitable for non-linear systems. It is an
abstraction methodology which converts the mathematical
model of a system into a graph, called Structural Model.
Upon that, graph-based algorithms are applied for the explo-
ration of diagnostic possibilities and the population of the
residual generators bank.

Structural Analysis has been used in the past in Fault
Diagnosis for manned and unmanned aircraft [14]-[16],
although without making an effort to utilize existing teleme-
try information. Instead, either overly limited or unrealistic
measurements were considered in those works.

The major contributions of this work are a) a framework
which populates a bank of diagnostic residual generators
based on available MAVLink telemetry and b) an exami-
nation of the MAVLink protocol regarding its suitability for
Parity-based diagnosis.



II. SYSTEM MODELING

The system model is comprised by two separate parts.
The first is a fixed model of the MAV, which should be
representative of a large class of MAVs to ensure reusability.
For demonstration purposes, we choose to work with a fixed-
wing MAV, balanced between practicality and usefulness, but
a multirotor model would be equally applicable. The second
is the varying set of measurement equations, as implied by
the MAVLink telemetry.

A. Fixed-Wing MAV Model

As discussed above, the more generic the employed model
is, the greater class of different MAVs it can cover. How-
ever, a balance should be struck between a generality and
detail, because the latter provides diagnostic information.
Incorporating model parameters is certain to make the model
applicable to only one aircraft. The only constraint is that any
subset of equations must either be a set of Analytical Equa-
tions (AE) or a set of semi-explicit, Index-1 Differential-
Algebraic Equations (DAE). This is to ensure that it can
be automatically solved by typical numerical methods. In
our previous publication [16], criteria which guarantee this
requirement were given. One such possible, albeit short,
model, used in this work, is presented in Table I and is
subsequently discussed upon.

Before proceeding, however, let us cover the variable
notation, which loosely follows the MAVLink nomenclature:
p-n, pe, pd vn, ve, v.d are the position and speed of
the MAV in the NED coordinate system. climb, v_wind_hor,
dir_wind, v_.w_n, v_w_e represent the climb rate and the wind
magnitude, direction, north-east components. cog, v_ground,
v_air are the course-over-ground, groundspeed and airspeed.
vee, v_servo, voltage_battery, current_battery refer to the
autopilot board and servo motor rail voltage, battery voltage
and current. roll, pitch, yaw are the Euler angles. alt_agl is
the altitude above ground level. eph, epv are the horizontal
and vertical dilution of precision of the GPS sensor. load,
freemem, drop_rate_comm is the percent load of the autopilot
processor, the unallocated RAM and the communications
channel drop rate. h_- are the components of the magnetic
field of the Earth. error_xtrack, error_rp_dcm error_yaw_dcm
are the L1 controller cross-track error and Euler angles
estimation errors of the autopilot. ms is Bernoulli’s equation.
kg is the wind triangle equation [8].

The model is constructed with maximum fault isolation
but also simplicity in mind; e.g. aerodynamics are excluded,
since they require the knowledge of the aerodynamic coeffi-
cients, unavailable in most MAVs.

Kinematic equations are the most common and first to be
introduced ki —ks5, along with wind-triangle equations kg —ksg
[8]. The dynamic pressure equation is also included (mo).
The equations propagating the Euler angles are not included
because it has been observed that they do not increase the
diagnostic capabilities of this system.

Limit-checking equations can also be incorporated. To that

TABLE I
EXAMPLE FIXED-WING MAV MODEL

Label | Constraint
k1 climb = —v_d

ko v_ground = Vv_n2 + v_e?

k3 pn=wvmn

k4 ple=v_e

ks tan(cog) = v_e/vn

ke v_w-n = v_wind-hor * cos(dir_wind)

k7 v_w_e = vwind_hor * sin(dir wind)

ks v_air = sqrt(v_ground? +v_wind_hor? — 2% v_ground *
v_wind_hor * cos(dir_wind — cog))

I lim(load, 0, load_mazx)

lo lim(voltage_battery, voltage_battery_min, oo)

I3 lim(current_battery, 0, current_battery_max)

lg lim(drop_rate_.comm, 0, drop_rate_.comm_maz)

ls lim(eph, 0, eph_max)

ls lim(epv, 0, epv_max)

l7 lim(alt_agl, alt_agl_min, alt_agl_max)

110 lim(vee, vee_min, vec.max)

11 lim(v_servo, v_servo-min, v_servo-max)

l12 lim(freemem, freemem_min, freemem_maz)

113 lim(vibration_x, 0, vibration_z_max)

l14 lim(vibration_y, 0, vibration_y-mazx)

l15 lim(vibration_z, 0, vibration_z_mazx)

l16 lim(v_air, v_air_min,v_air_max)

li7 lim(error_v_air, error_v_air_-min, error_v_air_-max)

mi h_total = sqrt(h_x® + h_y® + h_2?)
mo press_dif f = 0.5 % p* v_air?

el roll = roll_c

e pitch = pitch_c

es yaw = yaw-c

€4 error_alt =0

es error_v_air =0

€6 error_ztrack = 0
er7 error_rp_decm = 0
es error_yaw-dem = 0

goal, we introduce the limn function notation as follows:

lim(z, Tmin, Tmaz) = maz(maz(Tmin — ©,0),
(D

maz(x — Tmaz,0))
The equation lim(x, Tymin, Tmaz) = 0 holds when the value
of z is within its specified limits. In case of discrepancy, it no
longer holds and any residual using this equation will trigger.
l1—1y7 are limit-checking equations, populated with variables

commonly measured by MAVLink-enabled autopilots.
Finally, equations involving error variables (such as a
controller error) and implicitly equivalent variables (such
as desired and actual regulated state variables) can also be

added in this model (e; — eg).

B. Measurement Model

The second part of the system model is comprised of
measurement equations which are incurred by the MAVLink
messages present in each particular application. Different
MAVs may emit different subsets of the MAVLink message
set. The same may hold for the a MAV under different modes
of operation. The set of measurement equations which end
up in the system model varies accordingly and the ability of
Structural Analysis to seamlessly adapt around this variation
is one of its significant advantages.

Each measurement equation is assumed to be of the form:

S;iT T =T, 2)



where z is a variable of the MAV model and =z,, the
instantaneous reported value. x,, may be a raw measurement
from a hardware sensor, but may also very well represent a
tracking error of an internal controller or the output of a
Kalman filter.

C. Fault Modeling

No specific fault modeling is required to apply SA method-
ologies. This is inline with other SA works [13], [17];
the contribution of any fault type (additive, multiplicative,
parametric, etc) can be represented as an additive one. A
multiplicative measurement fault can be written as:

y=QQ+flz=z+fr=a+fs 3)

Since SA is concerned only with the structural form of the
equations, merely the membership of the fault variable f in
the equation is required to build the structural model. For
simplicity, one can assign an additive fault in the equation.

No fault is attributed to the ideal MAV model of Table I,
since it is not possible for equations modeling kinematics,
atmosphere, etc, to stop being true. It is the values they are
fed that are incompatible in case of a fault. This reasoning
also applies to limit- and error-checking equations: for exam-
ple, equality between an ideal error variable and zero never
stops to hold, but the actual measured variable value doesn’t
satisfy the equation in the presence of fault.

Thus, all faults are instead attributed to measurement equa-
tions. This also allows grouping the faults into subsystems,
which are usually coupled tightly together and cannot be
further isolated anyway.

III. STRUCTURAL ANALYSIS

In the previous section, a system model was constructed,
subject to a set of faults. The extraction of residual generators
from it centers around the discovery of analytically redun-
dant subsets of equations. These contain alternate paths of
calculation for certain variables, leading to the construction
of parity relations and providing opportunities for internal
cross-checks.

However, manually parsing the large, non-linear system
model in search of residual generators is effectively in-
tractable. More importantly, since not all MAVs generate
the same set of MAVLink messages, a pre-compiled, fixed
residual generator bank is not a viable approach. A process
is required which accepts the generic aircraft model, along
with the available subset of MAVLink messages, as input
and automatically returns Analytical Redundancy Relations
(ARRs), which form residual generators (Fig. 1).

Structural Analysis is suitable for this purpose [12], [13],
[18]. Contrary to traditional Parity-space formulations for
linear systems [19], it is an abstraction methodology. It con-
verts the mathematical model of a system into a qualitative
bipartite graph called Structural Graph (SG), which describes
whether there exist relations between model equations and
model variables. Although this graph contains less infor-
mation than the original model, it is a form suitable for
processing by automated, graph-theoretic algorithms.

More information on the premises of Structural Analysis
can be found in [13] while in our past work [16] emphasis
has been placed on its application in fixed-wing UAV models.

A. Basic Definitions

The system model of the previous section forms the
equation set C with elements c;. The set of included unknown
variables is X' with elements x;. Known variables (constants
and measurements) are not considered, without loss of gen-
erality. We denote the set of variables which appear in c; as
var(c;) and the set of equations which include z; as egs(z;).

The SG is generated as a bipartite graph G = (C, X, E),
whose edge set £ connects each variable vertex to the
equations it participates into according to the rule

e; = (¢j,x) € € <z, € var(cy) %)

According to the Dulmage-Mendelsohn decomposition
[20], any bipartite graph G can be uniquely partitioned
to three (potentially empty) subgraphs, G=,G" and G,
named under-, just- and over-constrained part. For each part
it holds that |[C~| < |X~|, |C°] = |X°], and |CT| >
| X T| respectively. Explicitly, there are more variables than
equations in the underconstrained part, equal in the just-
constrained part and less in the underconstrained part.

This leads to an important result: faults can be diagnosed
(from a structural sense) only for equations belonging to the
over-constrained part of a system. This decomposition is a
core tool of Structural Analysis, because it efficiently reduces
the search scope for analytical redundancy. Depending on
the available measurements, the equation set comprising G
varies. Thus, faults which end up in G are detectable, while
the rest are not.

If for a subgraph G; holds that G; =G, then it is Proper
Structurally Overdetermined (PSO) [13], [21]. In a PSO there
are more equations than variables; in a structural sense, it
is possible to calculate all the unknown variables from the
available equations, with one or more equations remaining
unused. The remaining equations have all of their variables
known and can be used as residual generators.

B. Disconnected Subgraphs

Given an overdetermined structural graph G, structural
redundancy is defined as ¢ = |C| — |X]| [21]. Let G*
be subject to ny faults; The upper limit of the number of
candidate residual generators is [21]

¢—1 (n
Nrg = 2k=1 (kf) o)
For a graph with a high structural redundancy and number
of faults, the number of potential residual generators quickly

becomes intractable. However, the situation is a lot more
favorable if G contains disconnected components. Let

Gt=U,;Gf, i=1,..,n (6)
where Gj‘ are disconnected subgraphs:

GINGS =0, i#j (7)



Then, the upper limit of the number of potential residual
generators is

Ny = Mrgi =5 ( o (n£)> <npy  (8)
because

(b = Z ¢i7

ng= nfi, npi>1

This will play an important role, as we will see in our case
study.

¢ >1 )
(10)

C. Graph Matchings

The final step for residual generation is the match-
ing procedure. Formally, a graph matching M is an
edge set, subset of & such that M={m;=(c¢;,z;) €€
|m;#m; iff ¢;#c; A x;#x;,Vi,j}. In other words, a set of
edges such, that any two edges do not have a variable or
an equation in common. Efficient matching algorithms have
been known to exist for many years [22]-[24].

A matching M extracted from a PSO G is a non-unique
pairing between equations and variables, such that every
unknown variable in Xi+ is assigned to be solved by one
equation of C;’ , ensuring that each equation will be used
only once. The remaining uncovered equations are available
as ARRs. ]

A known drawback of SA is that it abstracts away any
quantitative information of the given model and hence cannot
provide estimates regarding the actual fault sensitivity and
robustness of the residual signal. These estimates can be
readily accessed by further analysis in linear systems [25],
but for the general non-linear case there are only a few
related works [26]. In a parallel work [27], we tackle the
problem of sensitivity and robustness of nonlinear residual
generators using numerical methods.

IV. THE MAVLINK PROTOCOL

MAVLink [10] is a message protocol, designed to be suit-
able for communications between MAVs and their Ground
Control Station (GCS). It is perhaps the most widely used
message protocol in Unmanned Aerial Systems (UAS). Sys-
tems of commercial, non-commercial and academic nature
employ MAVLink as a platform to exchange remote com-
mands, mission descriptions and telemetry data among a
Ground Control Station (GCS), a MAV and its peripheral
payloads. PX4 and ArduPilot use it exclusively, while Pa-
parazzi has support for it.

MAVLink telemetry messages consist the source of the
measured information, which was modeled as measurement
equations in Section II. Each message is a variable-length
packet, consisting of a header, payload and two checksum
bytes. Each message is defined according to a rigid set of
message definitions, fixed for each protocol version. These
definitions assign each message ID to a message type and
fully describe its contents and size.

As an example, the sys_status message is assigned the ID
1. Some of its fields are voltage_battery, a 16-bit unsigned
integer, expressing the MAV battery voltage in mV and the

TABLE 11
APPLICABLE MAVLINK MESSAGE IDs

Message IDs
1, 2, 24, 27, 29, 30, 32, 33, 35, 36, 62, 65, 74, 116,
125, 150, 152, 163, 165, 168, 174, 178, 182, 193, 241

onboard_control_sensors_health, a 32-bit bitmask showing
which onboard controllers and sensors are operational.

A. Message classification

The payload of each message type essentially contains a
set of quantities (also termed fields). For the rest of this
work, a specific field of a specific message will be referred
to with the <message_ID/field_name> naming scheme. For
reasons that will become apparent at the end of this section,
we attempt to classify the entire set of messages.

1) Time Domain: Each message may represent an event or
can be emitted quasi-continuously. Commands from the GCS
and mission status updates are examples of event messages,
while raw sensor measurements and controller outputs are of
continuous-time. Typical telemetry rates for continuous-time
quantities are 4, 2 and 1Hz.

2) Value Domain: Each field may represent a quantity
whose domain of values is qualitative and discrete (e.g. the
autopilot mode) or continuous (e.g. barometric altitude).

Structural Analysis belongs to Parity-Based Fault Diag-
nosis, which is traditionally applicable to quantities which
represent continuous variables in continuous time [11]. This
becomes apparent by noting that both the MAV model of
II-A and the measurement model of II-B involve continuous
functions in the real domain.

Consequently, we are only interested in message fields
which satisfy these conditions. For this work, we use the
common MAVLink message set, along with the ardupilot-
mega extension [28], as emitted by the ArduPilot/ArduPlane
v.3.5.2 software. The list of message IDs which can be seen
in Table II are applicable for fault diagnosis and used.

Due to lack of space and the sheer number of messages,
the interested reader can refer to the Message Definitions
documentation, found online [10].

V. CASE STUDY
A. Detectability and Isolability Analyses

In total, the overall system model is comprised of
116 equations and 237 variables and is subject to 77
faults. We proceed to extract the structural model through
Structural Analysis. To that goal, we employed our own
MATLAB-based software, which can be found at http:
//georacer.github.io/fault-diagnosis/
demos/mavlink/mavlink.html. Some characteristic
performance numbers are given in Table III. These results
were produced offline with an Intel Core 17-6500 CPU @
2.5GHz and 8GB of RAM.

It should be noted that the original structural graph had
a high-level of structural redundancy (¢=>59), which would
result in a maximal number of possible PSOs with faults
in the order of 9.4 x 10?!. Parsing this many potential
PSOs would make the problem computationally intractable.


http://georacer.github.io/fault-diagnosis/demos/mavlink/mavlink.html
http://georacer.github.io/fault-diagnosis/demos/mavlink/mavlink.html
http://georacer.github.io/fault-diagnosis/demos/mavlink/mavlink.html

TABLE III
STRUCTURAL ANALYSIS PERFORMANCE CHARACTERISTICS

Metric Value

Initial Structural Graph generation time 0.7s
Non-connected subgraph generation time 24.9s
PSO discovery time (using MTES [21]) 20.9s
Valid matchings discovery time 13.1s
Generation of calculable residual generators time  103.6s
Total number of residual generators 108

TABLE IV
NON-ISOLABLE FAULT GROUPS

Group No  Faulty MAVLink Message ID/Field
1 168/direction, 168/speed, 24/cog
2 30/rollspeed, 116/xgyro
3 30/pitchspeed, 116/ygyro
4 30/yawspeed, 116/zgyro
5 116/xmag, 116/ymag, 116/zmag

Thankfully, the original problem was able to be broken down
into 34 non-connected subgraphs, containing 7952 PSOs at
maximum, which were parsed in a relatively very short time.
The Minimum Test Equation Support (MTES) algorithm [21]
was used for the discovery of PSOs from each SG.

The separation of the initial graph into subgraphs is
considerably expensive, and so is the discovery of PSOs,
even in the fragmented subgraphs. The matching procedure
is less time-consuming. The implementation of the resulting
residual calculation sequences into software functions is the
greatest hurdle. The procedure initially calls Matlab’s sym-
bolic solver on the original analytical expressions; symbolic
solvers are known to be slow. If an analytical solution for
the residual is not possible, then numerical solver tools are
automatically employed.

In total 108 residual generators were extracted. Parsing
the SG, each residual generator results in a fully-ordered
sequence of function evaluations, each of which is imple-
mented as numerical function. This minimizes the residual
evaluation time, allowing them to be used in real-time.

Out of the initial 77 faults, only 6 belong in the non-
detectable part of the SG (G~ |JGP?). All PSO matchings
were able to be converted into a calculable residual generator.
The resulting Isolability Matrix [13], [29] can be seen in
Fig. 2. Under the single-fault assumption, most faults can
be isolated from the rest, as witnessed by the singular
Konig-Hall components of the matrix. Table IV presents
the groups of non-isolable faults, which correspond to the 5
non-singular components. However, this isolability analysis
is overly optimistic, since in such tightly-coupled systems
such as UAVs the manifestation of a fault may quickly cause
more faults to appear.

B. Accident Investigation Example

Contrary to General Aviation incidents [30]-[32], where
human observers can report on the accident as experienced
first-hand, many UAV flights are flown “’blind”. That is, there
is no visual nor auditory feedback from the MAV to the
pilot, nor any other biological sensory signal. The state of
the vehicle is available only as telemetry and logs.

In a typical UAV accident investigation, the investigator
parses all available measurements time series, locates abnor-

Fig. 2.

Isolability Matrix

Fig. 3. The Unfortunate Conclusion of the Mapping Mission

malities, sorts them temporally and creates a causal sequence
of events. A thorough analysis requires a great amount of
time, especially in the presence of ample data.

This is an ideal application of the previously generated
bank of residual signals. The usefulness of the presented
approach is highlighted by a real-world example.

In October of 2016, the Remote Sensing Laboratory of
NTU Athens flew a mapping mission in South Africa, using a
2m fixed-wing MAV. The MAV was controlled by a Pixhawk
autopilot with ArduPilot ArduPlane v3.5.2. Mid-way through
the automated mission the MAV suddenly spiraled down
and crashed without warning. A visual representation of the
trajectory of the MAV can be seen in Fig. 3.

Fig. 4 is the Fault Grid corresponding to the last few
seconds of flight, a stack of boolean time series of can-
didate faults. All measurements provided by the MAVLink
messages were resampled and aligned at 1 Hz. The residual
signals were generated and compared against static thresh-
olds. For those residuals which exceeded their thresholds,
the corresponding faults are plotted in the Fault Grid on the
y-axis. In other words, at each time sample ¢, the fault f;
is marked with a rectangular interval if f; is part of the fault
signature of any residual triggered at time %y,.

By observing the evolution of candidate fault occurrences
in conjunction to time, the investigator can acquire a holistic
view of fault occurrences, before and after the accident.

Loss of control occurred at t=322s. Even before the
moment of failure, triggered residuals point to a few faults:
24/lon, 30/yawspeed, 33/lon, 116/zgyro, 182/lat and 182/Ing
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are probably caused by inconsistencies between the direct
measurements of the sensors related to the navigation system
and the 3 different navigation algorithms which ArduPilot
runs simultaneously. More concerning is the departure from
the airspeed envelope and the airspeed error, occurring
at time t=321s-325s, as witnessed by the faults 62/air-
speed_error and 74/airspeed. Plotting the actual airspeed data
series (Fig. 5) we see a significant drop at that interval.

Some moments later (t=322s-3245s), alarms for faults
related to state control are raised (62/nav_pitch, 62/error_alt,
32/nav_roll). Indeed, plotting the roll, pitch and altitude time
series, we clearly see that the aircraft has by now entered
a downward spiral, leading to the crash. Even though the
airspeed recovered a few seconds after the initial stall, the
autopilot was not able (nor programmed) to perform the
maneuver required to exit the spiral.

Interestingly, shortly after the failure and during the down-
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Fig. 6. Attitude and Altitude Time Series During the Crash

ward spiral, a lot of residuals related to faults of the sensor
and navigation subsystems triggered (33/alt, 163/error_rp,
163/error_yaw, 178/roll, 178/pitch). This can be attributed to
the separate state estimation filters under-performing because
of the rapid rotation and producing diverging estimates.

Regarding the root cause of the accident, we can safely
rule out airspeed estimation, since the related residuals did
not trigger. Instead, the first severe failure was the inability of
the autopilot to maintain the airspeed error within a +-3m/s
bound. This allowed the airspeed to drop below its prescribed
envelope, resulting in a tip-stall. Past that point, the autopilot
was no longer able to control the state of the aircraft.

The inability of the autopilot to regulate airspeed should
probably not be attributed to an external fault. Instead, it is
much more likely that the kinetic energy control loop was
badly tuned, especially taking into account the high Mean-
Sea-Level altitude the aircraft was flying at. However, further
investigation would require analysis of the internal structural
of the controller architecture and implementation, and such
information is not conveyed by the MAVLink stream.

The presented analysis was applied on a telemetry log,
but it is also applicable on real-time telemetry streams. The
costly procedure of residual generators implementation can
be carried out offline, while their evaluation into residual
signals can take place online and even on-board. The residual
thresholds (static or adaptive) should be available beforehand
however, since SA does not provide them.

VI. CONCLUSIONS

In this work we presented a Fault Diagnosis framework
for fixed-wing UAVs which emit telemetry in MAVLink
format. The large information content of the telemetry stream
was handled and exploited thanks to Structural Analysis
methodologies.

A generic structural model of a fixed-wing UAV was
synthesized, enriched with the measurement equations from
the telemetry. Detectability and isolability analyses were
carried out. Residual generators were constructed systemat-
ically. It was also shown that dividing the original system
graph into its disconnected subgraphs and treating each
subproblem separately has significant computational benefits.
The efficacy of the framework was showcased with a case
study, involving a real-life telemetry log of a UAV which
crashed during a mapping mission.

Demonstrating the applicability of the suggested frame-
work on-board, in real-time is a desirable future direction.
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