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Abstract— Parity-Based methodologies for fault diagnosis in
UAVs often result in nonlinear residual generators. Still, a
systematic framework to perform detectability and robustness
analyses of residual generators does not exist. In this work,
detectability and robustness metrics for static and dynamic
residuals are presented, while numerical methods, specifically
Particle Swarm Optimization, are employed to calculate them.
The results are used to characterize the performance of a fault
detection system. An application on a UAV model is shown,
based on real flight data.

I. INTRODUCTION

The state of the art in Unmanned Aerial Vehicle (UAV)
automation has mostly achieved estimation and control
requirements. Modern efforts for increased autonomy are
pushing towards fault diagnosis, which focuses on Fault
Detection and Isolation (FDI). Indeed, embedding UAVs into
the civilian airspace calls for enhanced safety requirements.
These can be satisfied if UAVs can monitor their health
status, detect faults and prevent failures [1].

Fault diagnosis techniques are majorly categorized into
model-based and data-based. The latter utilize existing pro-
cess history and are preferred when large amounts of logged
data of faulty conditions are available. They include Neural
Networks, Pattern Recognition and Statistical Classification
[2], [3]. However, they are not applicable in the design stage
of a UAV, or if there are not enough experimental data.

On the other hand, model-based techniques can be applied
on a mathematical model of the vehicle, which is usually
already available on the design stage. This can be advan-
tageous, as the capabilities of the diagnostic system can be
explored earlier and iterations can be faster. The most promi-
nent techniques of this category are Parameter Estimation,
Observer-based methods and Parity-space methods [2]–[4].
In this work, we shall focus on model-based methodologies.

Traditionally, most attempts towards model-based UAV
FDI refer to linear models [5]–[10]. Closed-form, optimal
solutions for specified performance exist in these cases.

More recently, works which are based on non-linear
models have also been presented. These commonly involve
manual design and tuning of diagnostic observers. The
resulting solutions are well-behaved and highly performant,
but are also cumbersome to derive and their design cannot
be automated [11]–[14].

More systemic approaches for the design of FDI systems
do exist: Parity-space is the most notable example [8]. By
exploiting analytical redundancy and rearranging the system
equations, residual expressions (also known as Analytically
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Redundant Relations (ARR) or residual generators) can be
formulated, producing residual signals. Comparing residuals
against static or adaptive thresholds leads to a diagnostic
decision.

For linear systems, it has been proven that Parity-space
methods are equivalent to other approaches [15]. For al-
gebraic, non-linear systems, variable elimination techniques
[11], [16] have been used with limited success. The problem
is further complicated by the large number of equations
found in detailed UAV models [17]. Recently, a qualitative
approach is preferred: a graph abstraction of the system, the
structural graph [1], is constructed and graph algorithms are
employed to extract structural residual generators [18].

A. Sensitivity and Robustness

In general, Parity-space residual generators are made avail-
able in the form of complex, non-linear (and potentially non-
analytic) functions of state, inputs, measurements, faults and
disturbances. In such cases, quantifying the influence of the
faults to a residual signal is not trivial [18]. Additionally,
noise and uncertainty contribute a stochastic or causal com-
ponent to the residual, leading to non-zero values in fault-
free situations and altering its response in faulty situations.
Consequently, the usefulness of a residual generator and the
appropriate threshold selection become obscure. This is the
motivating force of this work: acquiring a quantitative metric
of the contribution of faults, noise and uncertainty to non-
linear residual signals.

To that goal, further analyses are required: detectability
analysis to determine the actual fault contribution in a
residual signal and robustness analysis to assess the con-
tribution of noise and uncertainty. The resulting metrics are
indicative of the residual signal performance, noise rejection
capabilities and enable an educated selection of detection
thresholds.

In a repeating pattern, publications addressing detectability
and robustness analyses or a combination of both already
exist for linear systems [4], [9], [10], [19], [20]. For non-
linear systems, only frameworks other than Parity-space have
tackled this problem. In [21], logged fault responses were
used as basis of an optimization problem, forming a residual
residual signal with maximum sensitivity and robustness
simultaneously. In [22] non-linear observers were combined
with H∞ methods to introduce robustness to the FDI system.

B. Contribution

In this work we tackle the problems of characterizing
the detectability and robustness performance of non-linear
ARRs, commonly found in detailed UAV models. We derive
quantitative corresponding metrics by employing numerical



methods, specifically Particle Swarm Optimization. Finally,
we showcase our methods on a model of a fixed-wing UAV
and real logged data.

II. MODELING OF RESIDUAL EXPRESSIONS

A. UAV Model

The aircraft models presented in FDI literature are usually
compact and idealized, or even contain only part of the vehi-
cle dynamics, so that concepts can be better conveyed. How-
ever, a practical FDI system based on analytical redundancy
can only be as detailed as the system model underlying it.
Consequently, with the intention of supporting an arbitrarily
high level fault isolation resolution, we consider a large-scale
model of a UAV, implemented as an interconnected set of
subsystems affected by their own faults. We choose to work
with a fixed-wing form factor, but the methods presented
in this work could be applied in multirotor models as well.
Typically, rigid-body dynamics, aerodynamics, propulsion,
actuators, sensors and payloads are incorporated into a UAV
model.

There is a multitude of methodologies which can be
used to derive the involved submodels. Most commonly,
mathematical modeling uses first principles, manufacturer
data (tabular data, provided coefficients etc.) and model
identification procedures. All subsystems are lumped into a
set of N , generally non-linear, equations:

G={hi(y,u,x, ẋ,d,f) = 0, i = 1, ..., N} (1a)
x∈Dx, ẋ ∈ Dẋ,y ∈ Dy,u ∈ Du,d ∈ Dd,f ∈ Df (1b)

where y is the measurements vector over all the submodels,
u is the inputs vector, x is the vector of internal variables, d
are disturbances and f are fault variables. Dx, Dẋ, Dy , Du,
Dd and Df are the domains of each corresponding variable
vector. Auxiliary state variables can be introduced so as only
first derivatives of variables appear in (1), which has a form
known as a Differential-Algebraic Equation system (DAE).

Assumption 1: The domains Dx, Dẋ, Dy , Du, Dd and Df
are convex.

Due to lack of space we shall not include a full example
of a model with so many equations. The reader is directed to
our previous work [23], where a fixed-wing UAV model is
presented, with more than a hundred equations and variables.

B. Fault Modeling

In the context of the presented methodology, no distur-
bance and fault modeling is performed, other than specifying
them as unknown inputs, additive to the equations they
contribute and lying within their predefined domains [18].

C. Residual Generator Formulation

Using the equations of (1) and employing existing method-
ologies [24], [25], subsets of equations can be formed (under
conditions not covered in this work) which consist of a
square equation system and one more ARR. By solving the
system and substituting variable values into the ARR, the
residual generator is evaluated.

In the simplest case, residual generators are static systems:

0 = ha(xa, z,d,f) (2a)
r = hr(xa, z,d,f) (2b)

where ha is a known square system of algebraic equations,
which can be solved for its variables xa, given inputs, and
measurements (combined in a concatenated vector z), dis-
turbances and faults. hr is the residual generator expression,
evaluated for the residual signal r.

Incorporating the solution of xa into (2b), we get the
lumped expression:

r = h∗r(z,d,f) = 0 (3)

Note that since (2b) reflects the real system, including
disturbances and faults, h∗r=0 is always satisfied: it is a
compatibility condition for (z,d,f) and a manifold for these
variables is formed:

M = {(z,d,f) : h∗r(z,d,f) = 0} (4)

On the other hand, a real-world, implemented FDI system
doesn’t have access to the unknowns d and f . The hatted
counterparts of ha and hr, which represent the ideal and
healthy system, are formed by setting d = f = 0.

0=ĥa(x̂a, z), z ∈M (5a)

r̂=ĥr(x̂a, z) (5b)

Thus solving ĥa for the fault-free, disturbance-free estimate
x̂a and substituting into ĥr will form ĥ∗r (equivalent to (3))
and result in a r̂ which equals 0 only when the actual system
is fault- and disturbance-free as well. This is the core of the
Parity-space approach.

For the dynamic case, the following assumption is made:
Assumption 2: All dynamic residual generators are of

Index-0 or Index-1 Differential-Algebraic Equations (DAE).
This might be a rather strong assumption, but it is necessary
for all submodels of G to be solved by readily available
software libraries, at least numerically, if not analytically
[26], [27]. Even if the original system does not meet this
requirements, in [23] we have shown how a system model
can be edited so that this assumption is guaranteed.

The dynamic residual then takes the form:

ẋd=hd(xd,xa, z,d,f), (xd,xd,xa, z,d,f) ∈M (6a)
0=ha(xd,xa, z,d,f) (6b)
r=hr(xd, ẋd,xa, z,d,f) (6c)

where xd is the state variables vector, xa is the algebraic
variables vector and M is defined similarly to (4).

Similarly to the algebraic case (5), the actual implemented
FDI system has the form:

˙̂xd=ĥd(x̂d, x̂a, z), z ∈M (7a)

0=ĥa(x̂d, x̂a, z) (7b)

r̂=ĥr(x̂d, ˙̂xd, x̂a, z) (7c)

We add one more assumption, whose purpose will become
evident in Section IV:



Assumption 3: For any constant z, the
(now autonomous) dynamic system (7) is
driven to an equilibrium point, implying that
∀z lim

t→∞
˙̂xd=0, lim

t→∞
(x̂d, x̂a)=(x̄d, x̄a) and lim

t→∞
r=c ∈ R.

Remark: The above assumption is not uncommon in
dynamic subsystems found in UAVs. One such example is the
UAV motor subsystem, which reaches constant RPM under
constant input command. Another example is the longitudinal
velocity of a UAV, which eventually becomes constant for a
given propeller thrust. A dynamic subsystem which does not
satisfy this assumption is the altitude of the UAV, which
does not come to an equilibrium for a constant vertical
velocity; instead it maintains a constant rate of change and
the residuals corresponding to such subsystems cannot be
analyzed under the present methodology.

Additionally, without loss of generality regarding de-
tectability and robustness analyses, for the rest of this work
each residual generator shall be subject to only one fault.

D. Problem Formulation
Informally, the two problems tackled in this work can be

formulated as follows: Given a residual generator ĥr, 1) what
is its sensitivity to fault f and 2) what is its sensitivity to
disturbances d in absence of fault (f = 0).

III. RESIDUAL ANALYSIS

A. Robustness Analysis
As discussed previously, we seek a quantitative expression

for the disturbance response of the residual. This is helpful in
finding a minimum threshold value, below which the residual
is expected to fluctuate, even in absence of faults.

Generally, the sensitivity of a residual to disturbances is
expressed as ∂r̂/∂d. For the case of non-linear systems,
the evaluation of the partial derivative is difficult, especially
finding an analytical expression, which may be a function of
x, z and d. Even worse, (5) or (7) may be very large (tens
of equations)

Keeping in mind that the end-goal is to quantify the distur-
bance response of the residual, a slightly different approach
is chosen. Instead of calculating the partial derivative of the
residual to the disturbance, a bound for absolute residual
response (|r̂|) is sought directly [4]. For that purpose S+

d is
defined as the absolute maximum residual response over all
operating conditions under maximum disturbance influence
and in absence of faults.

1) Static Systems: First, the (worst-case) maximum dis-
turbance function is defined as the supremum of the residual
over the measurements z:

r+d (d) = sup
z

(∣∣∣ĥ∗r(z)
∣∣∣) , (z,d,f = 0) ∈M (8)

Then, the maximum disturbance response is then be defined
as the supremum of r+d (d) over the disturbance range:

S+
d = sup

d
(r+d (d)), (z,d,f = 0) ∈M (9)

It is emphasized that in both optimization steps (z, d) must
lie in the manifold M, i.e. satisfy the compatibility condition
(h∗(z,d,f = 0) = 0).

2) Dynamic Systems: Dynamic systems are more com-
plicated to handle, since the residual response is also a
function of time (t). The lumped form of (7c), ĥ∗r , contains
the solution of x̂d (the DAE state variables) which depends
on the estimated initial state. It can be re-written as

r̂(t) = ĥ∗r(t, z(t), x̂0) (10)

and it becomes evident that the maximum value of each
realization of r(t) is of interest. The infinite norm is used
to reflect this. Consequently, the dynamic equivalents of (8)
and (9) are defined as:

r+d (d(t))= sup
z(t),x0

(∥∥∥∣∣∣ĥ∗r(t, z(t), x̂0)
∣∣∣∥∥∥
∞

)
(11a)

S+
d =sup

d(t)

(r+d (d(t)) (11b)

(z( t ),d(t)) ∈M ∀t (11c)

B. Detectability Analysis

In the faulty case, the fault variable takes non-zero values
(f 6= 0) while disturbances continue to manifest. Detectabil-
ity analysis can be covered by the exact same framework
as robustness analysis. However, there are now two target
metrics of interest.

Firstly, we present the residual response over all operating
conditions and under maximum fault influence S+

f . This is
the equivalent to S+

d and is defined as:

r+f (f) = sup
z,d

(∣∣∣ĥ∗r(z)
∣∣∣) , (z,d, f) ∈M (12a)

S+
f = sup

f
(r+f (f)), (z,d, f) ∈M (12b)

Equally important is the worst case residual performance
(small response) while under maximum fault influence (S−f ).

r−f (f) = inf
z,d

(∣∣∣ĥ∗r(z)
∣∣∣) , (z,d, f) ∈M (13a)

S−f = sup
f

(r−f (f)), (z,d, f) ∈M (13b)

This metric is crucial because it reveals operating points
where the influence of the fault to the residual is smaller or
non-existent, due to non-linearity. It is notable that both S+

f

and S−f encompass a maximization over the fault domain
to capture the maximum fault response, which may not
correspond to fmin or fmax.

Similarly, for the dynamic case the detectability metrics
are:

r−f (f(t))= inf
z(t),d(t),x0

(∥∥∥∣∣∣ĥ∗r(t, z(t),d, x̂0)
∣∣∣∥∥∥
∞

)
(14a)

r+f (f(t))= sup
z(t),d(t),x0

(∥∥∥∣∣∣ĥ∗r(t, z(t),d, x̂0)
∣∣∣∥∥∥
∞

)
(14b)

S−f =sup
f(t)

(r−f (f(t)) (14c)

S+
f =sup

f(t)

(r+f (f(t)) (14d)

(z( t ),d(t), f(t)) ∈M ∀t (14e)



Detectability and robustness metrics are valuable; in the
scope of a single residual, they provide insight on the Signal-
to-Noise ratio and allow educated choice of detection thresh-
olds. Additionally, they allow for performance comparison
among multiple residuals sensitive to the same fault.

IV. NUMERICAL IMPLEMENTATION

As it was stated in the previous section, trying to analyti-
cally calculate the suprema and infima of the sensitivity and
robustness metrics, for multi-variable non-linear functions or
systems is unrealistic. Instead, a numerical approach can be
pursued, allowing the analysis of residuals to be performed
systematically, even automatically, greatly facilitating FDI
system design.

Starting from detectability analysis, it is obvious that
the required maximization of (12) is a multi-variable, non-
continuous, non-linear optimization problem. While tradi-
tional optimization methods could be used to tackle the op-
timization, the large dimension of the search space (possibly
tens of variables) imposes severe calculation costs. Moreover,
the cost function may not be sufficiently smooth for gradient-
based methods.

Particle Swarm Optimization (PSO) is chosen to solve
the maximization problem [28]. According to this heuristic
optimization method, a set of particles is considered, with
coordinates xn ∈ Dx each, initialized randomly over the
domain. A random initial velocity vn is also assigned to
each particle. Each particle can evaluate the function under
optimization on its position and remember the lowest cost it
ever met and the coordinates this happened pn. During each
iteration, every particle establishes communication with a
neighbourhood of K other particles, randomly selected with
replacement, with which it shares its best coordinates. The
coordinates with the lowest cost for the whole neighbourhood
are gn.

The equations of motion for each particle are, for every
dimension d of the particle position xn

vdn ← c1v
d
n + c2r(p

d
n − xdn) + c2r(g

d
n − xdn) (15a)

xdn ← xdn + vdn (15b)

where c1 is the particle self-confidence (inertia), c2 is a
parameter representing confidence to already existing lower
costs, and r is a uniformly random variable in the domain
[0, 1].

In case a particle is about to leave its domain along the
direction of a dimension, its position is set to

xdn ← min(max(xdn + vdn, x
d
min), xdmax) (16)

and its speed is set to zero.
This method is favored because:

• It does not require the existence of a gradient or even
continuity for the functions of G, removing the assumption
of smoothness which may be problematic in the context of
highly non-linear, possibly piece-wise residual generators.

• Domain constraints for Dz , Df , Dd can be inherently
handled.

• Optimization constraints can be incorporated, e.g. (3).

• It has tuning parameters with explicit meaning.
• It is quite robust, in the sense that broad variations in the

optimization parameters do not prevent convergence.
All of (8)-(13) are optimizations with equality constraints,

implied by the manifold M. In PSO, soft constraints can be
used to enforce equality constraints [29]:

Jc = h∗r(z,d, f) (17)

In the simple case of (12), where the residual generator is a
purely algebraic non-linear system, one can write:

S+
f = max

z,d,f

(∣∣∣ĥ∗r(z)
∣∣∣− k1(Jc)

)
(18)

The calculation of S−f is more complicated, because it consti-
tutes a minimax problem, instead of a simple maximization:

S−f = max
f

(
min
z,d

(∣∣∣ĥ∗r(z)
∣∣∣ + k1(Jc)

)
− k2(Jc)

)
(19)

k1 and k2 are convex functions defined in [29]. The inner
minimization is solved by PSO, while the outer maximiza-
tion, a single-variable optimization, can be delegated to a
more typical algorithm, e.g. Matlab’s fmincon.

For the case where the residual generator is a dynamic
system (a DAE at the most general), the optimization prob-
lem is more involved. Notice how the optimizations (14) are
actually over the infinite domain of all possible signals f(t),
d(t) and z(t). Even if a time interval [t0, td] is discretized
and tackled numerically, the explosion in optimization di-
mension in considerable.

A possible discount in the search space would be to
assume constant values for u, d and f , solve the DAE to
generate compatible outputs y(t) (such that (u,y(t), f) ∈
M ∀t ∈ [t0, td]) and construct the residual signal. However,
the dependence on [t0, td] is still significant: it should be
long enough for fault dynamics to manifest.

This approach is also rejected because a) solving the DAE
is too costly in the context of thousands of evaluations
required by the PSO sampling and b) in the FDI context the
separation between input and output variables is not clear in
regard to the residual generator expression: both user inputs
and system measurements are inputs to the FDI system.

Instead, a compromise is made where the residual response
of DAEs is examined only on steady-state conditions (i.e.
ẋd=0). This at least provides a quantification of the steady-
state residual response. The existence of such equilibrium is
guaranteed by Assumption 3.

For each sampled z, d and f , a solution pair (x̄d, x̄a) is
found by solving the system:

0 = ha(xd,xa, z,d, f) (20a)
0 = hd(xd,xa, z,d, f) (20b)

The solution exists because of Assumption 3 and the fault
response metrics are formed as:

Jc = h∗r(z,d, f, x̂d,0 = x̄d) (21a)

S+
f = max

z,d,f

(∣∣∣ĥ∗r(z, x̂d,0=x̄d)
∣∣∣− k1Jc) (21b)



S−f = max
f

(
min
z,d

(∣∣∣ĥ∗r(z, x̂d,0=x̄d)
∣∣∣+k1Jc

)
−k2Jc

)
(21c)

The aforementioned PSO implementation for detectability
analysis is directly applicable to robustness analysis, as
shown in the previous section. In fact, the related calculation
cost is smaller, because setting f = 0 reduces the optimiza-
tion dimension by 1.

A. Explicit Differentiation - An Exception

Consider the small system of a residual generator:

r=y − ẋ− d (22a)
x=u+ f (22b)

Despite appearances, this is not a DAE, because the state
variable x is calculated from the input u and the fault in
(22b), differentiated and substituted in (22a), where it is
compared with the other input y and the disturbance d. It
is possible to systematically check if a residual generator
implies a DAE, but it is out of the scope of this work.

In such subsystems, the use of the simple Implicit Euler
formula gives rise to algebraic systems, which can be solved
by substitution. In this example, past values of u are needed
to calculate the residual rk = r̂∗, which are available anyway.

More importantly, it is evident that the residual is sensitive
to the derivative of the fault and not its instantaneous value.
This is a common result which forces us to sample consec-
utive values of the differentiated variables when performing
PSO, to account for the effect of the derivative.

This discretization technique can also be embedded in
dynamic subsystems which include input derivatives, adding
algebraic variables to the DAE.

V. CASE STUDY

In this Section, an algebraic subsystem of a fixed-wing
UAV is employed to demonstrate the concepts and algo-
rithms, intentionally small enough to be manually tractable. It
covers, among others, a fault in the Angle-of-Sideslip (AoS)
sensor. The first equation is the AoS definition, the second
is part of the rigid-body lateral kinematics and the third is
the accelerometer measurement in the body y-axis.

v = sin(βf )(Va,f ) (23a)
v̇ = Fy/m+ ru+ pw (23b)
ay = Fy/m− sin(φf ) cos(θf )g (23c)

β is the Angle-of-Sideslip, Va is the airspeed, φ and θ are
the roll and pitch Euler angles, [u, v, w] is the Body-frame
inertial velocity vector, Fy is the lateral force, p and r are
the Body-frame angular velocities along the x and z axes and
ay is the Body-frame lateral acceleration.
ay , p, r, u, w, g and m are quantities and parameters

which are known or measured, but subject to disturbances
or uncertainty. For example, the available measurement for
the roll rate is p̃=p+dp, with dp being the corresponding
disturbance. Va,f , βf , φf and θf are also measured, but the
corresponding sensors are subject to faults, e.g. βf=β̃+fβ .
The algebraic variables vector is xa = [v, v̇, Fy].

TABLE I
VARIABLE DOMAINS

β -0.79 - 0.79 θ -0.35 - 0.35 w -5 - 5
Va 20 - 35 ay -15 - 15 p -2 - 2
φ -1.05 - 1.05 u 20 - 35 r -2 - 2

TABLE II
FAULT AND DISTURBANCE DOMAINS

fβ -1.57 - 1.57 dVa -2 - 2 dw -1 - 1
fVa -5 - 5 dφ -0.0349 - 0.0349 dp -0.2 - 0.2
fφ -0.087 - 0.087 dθ -0.0035 - 0.0035 dr -0.15 - 0.15
fθ -0.087 - 0.087 day -2 - 2 dm -0.2 - 0.2
dβ -0.0262 - 0.0262 du -2 - 2 dg -0.05 - 0.05

In this overdetermined system any equation can be used
as a residual generator, based on the square 2x2 system that
the other two equations form. We select (23b) as the residual
generator equation. The residual derivation encompasses
explicit differentiation.

The residual generator ĥ∗r is formed:

ĥr=v̇ − Fy/m− ru− pw

⇒ ĥ∗r=
sinβf,kVa,f,k − sinβf,k−1Va,f,k−1

dt
−ãy,k − sin(φf,k)cos(θf,k)− r̃kũk − p̃kw̃k (24)

Proceeding with fault sensitivity and robustness analyses,
the specified variable domains are shown in Table I and
domains for faults and disturbances are shown in Table II.
All units are in SI. Matlab’s particleswarm is employed
and the optimization parameters used are shown in Table III.

The results are shown in Tables IV and V. Each column
refers to one of the four specified faults. Each fault is
examined in absence of the rest. It is worth noting that only
fβ excites the residual sufficiently to become detectable. fVa

can, at-best, barely overcome the worst-case disturbances.
fφ and fθ practically do not affect the residual, despite
contributing to it.

This example system was purposely selected, as it cor-
responds to a real-world event: During a test-flight for data
collection with the flying testbed of our laboratory, the Angle
of Sideslip sensor was damaged and came loose during flight

TABLE III
PARTICLE SWARM OPTIMIZATION PROPERTIES: AOS SENSOR FAULT

Metric/Parameter S+
f S−

f S+
d

Size of Algebraic Equation System 14
Total Number of Variables 39

Swarm size 500 30 500
Maximum Iterations 200

Maximum Stall Iterations 5
Optimization Dimension 21 21 20

TABLE IV
RESPONSE METRICS

fβ fVa fφ fθ

S−
f 249.71 5.23 0.75 0.14
S+
f 368.77 64.35 32.66 29.35
S+
d 29.18



Fig. 1. Failure on Angle-of-Attack Sensor

(Fig. 1). The complete dataset collected from this flight can
be found at [30].

Under the assumption that only fβ manifests, the corre-
sponding analytical residual fault response expression is:

r = ˙̃Va(sin β̃ − sin(β̃ + fβ))

+Va(cos β̃
˙̃
β − cos(β̃ + fβ)(

˙̃
β + ḟβ) (25)

Thus, the fault response is affected both by fβ and its
derivative ḟβ , which is to be expected, since this is a residual
obtained through differentiation.

The residual value, calculated from the system measure-
ments and inputs is plotted in blue in Figure 2 (middle). For
reference, a fault estimate and its derivative are displayed,
calculated using additional analytical redundancy stemming
from the v estimate provided by the Inertial Navigation
System (INS) of the UAV. Based on this estimate, the
expected value of the residual, as a function of the fault, is
plotted in red. The S−β , S+

β and S+
d values are also marked.

The residual indeed exhibits the expected level of response
while fβ and ḟβ are large. When the value of ḟβ drops,
the residual also diminishes, which is to be expected. The
calculated residual peaks higher than S+

β only sparsely and
by a small margin; this may be attributed to bad estimates
of disturbance limits or unmodeled dynamics.

The robustness threshold is very low, barely visible in
Fig. 2. However, Fig. 3, which depicts a previous, fault-free
portion of the flight gives a much better picture. Over 500 s,
and across a large variation of state (bottom subfigure) the
residual never exceeds the prescribed robustness threshold,
with very few exceptions. In fact, analysis shows an inter-
mittent increase in fβ during these occurrences.

Evidently, the preliminary, model-based results of fault
response and robustness fit the real flight data very tightly.

TABLE V
PSO SOLUTION TIME (SECONDS)

fβ fVa fφ fθ

S−
f 176.59 126.37 119.15 104.36
S+
f 56.13 40.87 22.00 21.60
S+
d 22.92
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Fig. 2. AoS Fault, Residual Response and UAV State. The residual is
much more sensitive to the derivative of the fault.
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Fig. 3. Fault-Free Residual and Trajectories

VI. CONCLUSIONS AND FUTURE WORK

In this work we have examined the fault sensitivity and
robustness of non-linear residuals, in the context UAV FDI.
Employing Particle Swarm Optimization, we have proposed
a model-based, numerical method, suitable for both algebraic
and dynamic subsystems of resigual generators.

An extended application of the methodology was per-
formed on a residual sensitive to Angle-of-Sideslip sensor
faults. Residual response levels were estimated a-priori and
were then compared to data from a real faulty scenario. The
results were matching closely.

In the future, we shall direct our efforts to test the
presented method in experiments with dynamic residual gen-
erators. Also we intend to expand the metric formulations,
leading to adaptive thresholds and increased autonomy in
UAV systems.
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