
Generating Semi-Explicit DAEs with Structural Index 1 for Fault
Diagnosis Using Structural Analysis

Georgios Zogopoulos Papaliakos and Kostas J. Kyriakopoulos

Abstract— Structural Analysis is a lucrative option for Fault
Detection and Identification in Unmanned Aerial Vehicles
(UAVs), because it handles detailed, large-scale mathematical
models. It can be employed by an on-board flight computer to
generate residual generators and implement automatic fault-
detection. Contemporary algorithms applied on dynamic sys-
tems may yield residual generators which require the real-
time solution of Differential-Algebraic Equation (DAE) systems.
Depending on the form and differential index of each DAE
system, its solution may not be possible exclusively by compu-
tational means. In this paper we explore the relation between
Structural Analysis algorithms and the forms of DAE systems
they produce, propose conditions under which all generated
DAEs are Structural Index-1 and semi-explicit and provide a
large-scale fixed-wing UAV model with that property.

I. INTRODUCTION

As Unmanned Aerial Vehicles (UAVs) become deeply
integrated into the civil airspace, they are required to exhibit
a comparable level of autonomy to manned aircraft, in terms
of navigating a dynamic environment and addressing faults.

A fault is a deviation of the system parameters or the
system structure from the nominal condition. If action is not
taken against it, it may result to failures, rendering the system
inoperable [1], [2]. Indeed, regarding UAVs, component fault
is a much more common accident cause than human error
[3],[4]. But since human pilots cannot perceive the system
state directly and persistently, in contrast to manned aircraft,
UAVs must detect faults automatically, as early as possible.

The discipline of Fault Diagnosis (FD) establishes math-
ematical and physical structures that are able to detect
when a fault occurs in a system. Afterwards, fault isolation
methodologies can be performed to identify the system
component which is at fault. This information is vital for any
fault-tolerant control scheme. Both detection and isolation
procedures, in a consistency-based (also known as parity-
based) continuous-time diagnosis context, utilize residual
signals r(t). Given the combined input-output vector y and
redundant model knowledge, one can exploit the ability to
calculate a quantity with more than one way and design
a residual generator function r(t) = f(y(t)), such that
under no-fault conditions r(t) = 0 should hold and vice
versa. [1],[5],[2]. Analytical redundancy is especially useful
in commercial UAV applications, where low cost and weight
are primary requirements and finding Analytical Redundancy
Relations (ARRs) which can be used as residual generators is
a primary goal [5],[6]. Even though there have been extensive

The authors are with Control Systems Lab, School of Mechanical
Engineering, National Technical University of Athens, Greece {gzogop,
kkyria}@mail.ntua.gr

studies covering linear systems, ARR-based FD methods on
non-linear systems are still under development [7],[8].

Detailed diagnosis requires large-scale mathematical mod-
els. Manually extracting the maximum number of ARRs
from such large models is impossible in real-time, if at all
[9],[10],[11], yet swift response is valuable in restructurable
and self-repairing systems. Algorithms for automated ARR
extraction on aircraft have been recently proposed, based
on Structural Analysis (SA) [2],[1],[7]. However, not all
residual generators generated by SA techniques are valid
for implementation by an automated computing system
[8],[12],[11]. In the case where ARRs include dynamic loops
(dynamic systems), a Differential Algebraic Equation system
(DAE) may need to be solved to calculate the corresponding
residual. This numerical problem is known to have severe
theoretical difficulties, especially in non-linear systems, such
as UAVs [12],[13],[8].

Even though this problem is relevant to any dynamic
model, in this work we focus on the application of the
method on a fixed-wing UAV with electric propulsion. We
propose sufficient conditions under which a model is a semi-
explicit DAE with Structural Index 1 and provide a large-
scale model which is compliant to these conditions and
ready to be parsed by SA algorithms and numerical solution
methods.

In section II, the SA methodology for residual generator
extraction is presented and the resulting ARRs are formally
described. In section III, DAEs are briefly introduced and
conditions on the model structure for simple automated
evaluation are presented. In section IV, the proposed UAV
model is provided. In section V, realistic faults and sensor
inputs are prescribed for the model and fault detection is
performed on a simulation of the proposed system. Finally,
section VI concludes the paper.

II. STRUCTURAL ANALYSIS

The ability of an on-board fault diagnostic system to
automatically extract residual generators is a very desirable
feature, because it allows it to respond to changes in the
model in real-time. However, embedded computing systems
don’t have the ability of processing the symbolic equations
which constitute a model within reasonable time and resource
constraints. Instead, SA is employed, for which a more
extensive introduction can be found in the authors’ previous
work [11] and in [1]. Definitions required for this work are
presented in this section.

A. The Structural Graph

SA is a methodology for abstracting the mathematical
model of a system into a qualitative model which describes
whether there exist relations between model equations (also
referred to as constraints) and model variables. The resulting
model is commonly structured as a bipartite graph. Even
though the bipartite graph contains less information than
the original model, it is a form suitable for processing by
automated algorithms [1],[7].

Given a mathematical system model, the initial set of its
constraints C0 with elements ci and the initial set of its
variables X0 with elements xj is considered. We denote the
set of variables which appear in ci as var(ci) and the set of
equations which include xj as eqs(xj). Solving a ci for a
scalar xj (if possible) results in the evaluation xj = fi,j(x).
Solving ci for zero results in the evaluation 0 = fi,0(x).

An assumption is made to ensure that the constraints are
always well-defined:

Assumption 1 (Constraint Domain): Let there be a con-
straint ci : Di → R. It should hold that T ⊆ Di, where T
is the trajectory space of var(ci). Re-wording, the system
should not enter a state which would render a constraint
undefined.

Definition 1 (Variables Solvable by a Constraint): Given
a constraint ci and the set of its variables var(ci), the set of
variables for which the constraint can be solved is defined
as:

vars(ci) = {xj ∈ var(ci) : ∃fi,j} (1)

Example 1 (Solving a Constraint): Given a constraint ci
describing the derivative of the body velocity x-component
of an aircraft [14]

u̇ = rv − qw + Fx/m (2)

r /∈ vars(ci), because fi,r is not defined in all of T (which
includes v = 0).�

In practice, one might choose to limit vars(·) even more
during implementation, because of numerical stability issues.

The methods employed in this work require the extension
of C0 with explicit first-order differentiation equations for
those variables whose derivatives appear in the system model
(e.g. ẋ = d/dt · x) [1]. Let the set of these explicit
differentiation equations be D, with elements di.

C = C0 ∪ D (3)

The variables set is accordingly extended with the variable
derivatives XD.

X = X0 ∪ XD (4)

Since D is comprised solely of first-order differentiations,
XD includes only first-order derivatives.

The variables set is partitioned into X=XU
⋃
XK , where:

• XU is the set of unknown variables
• XK is the set of known variables, e.g. measurements,

inputs and constants
For the purposes of our analysis the set of known variables
XK can be disregarded and discarded, without loss of struc-
tural information [1].

In this work, the structural graph is defined as a partially
directed bipartite graph G=(C,X , E) with vertex sets C
and X and an edge set E= {eij=(ci, xj) : xj ∈ vars(ci)} ∪
{eji=(xj , ci) : ci ∈ eqs(xj)}, to reflect Assumption 1.

B. Graph Matching

An intermediate step towards extracting residual genera-
tors from the structural graph is to produce matching sets. A
matching is a subset of E such that M= {mi=(ci, xi) ∈ E
|mi 6=mj iff ci 6=cj ∧ xi 6=xj ,∀i, j}. In other words, a match-
ing is a set of edges such that, any two edges do not have a
variable or a constraint in common.

Since most matching algorithms are applied on undirected
graphs, the following terminology is emphasized:

Definition 2 (Realizable Matching): Let there be a par-
tially directed graph G = {C,X , E} and a matching edge
mk ∈ M. mk is realizable iff mk ∈ E . Similarly, M is
realizable iff every mk is realizable [10].

Assumption 2: For the rest of this paper, only realizable
matchings will be admitted onto a structural graph.

For a given G and an M onto it, if |M|= |X | or
|M|= |C|, then the matching is called complete with respect
to X or to C respectively. If |M|= |X |= |C| then the
matching is perfect.

For any undirected bipartite graph, a unique decompo-
sition is defined, called the Dulmage-Mendelsohn (DM)
decomposition. It identifies three (possibly empty) subgraph
components:

G−=
(
C−,X−, E−

)
, |C−| < |X−|

G0=
(
C0,X 0, E0

)
, |C0| = |X 0|

G+=
(
C+,X+, E+

)
, |C+| > |X+|

The decomposition guarantees that there exists a complete
matching (not necessarily unique) on C− in G−, a perfect
matching in G0 and a complete matching on X+ in G+.
G− is called the under-constrained part of G, G0 just-
constrained and G+ over-constrained [15].

Given a matching M, a directed graph Gd= {C,X , Ed}
can be constructed, with edges defined as Ed={eij=(ci, xj) :
eij∈M}

⋃
{eji=(xj , ci):(ci, xj)/∈M}, eij∈E , i.e. matching

edges are directed from X to C and the rest from C to
X . The reverse of this graph is obtained by reversing the
directionality of its edges and is denoted as G′d.

Each matching is equivalent to a pairing between con-
straints and variables, so that each variable covered by the
matching is solved by one equation of C, ensuring that each
equation will be used only once. A matching M onto G
dictates the evaluations

xJ(1) = fI(1),J(1)(·) (5a)
xJ(2) = fI(2),J(2)(·) (5b)

. . .

xJ(k) = fI(k),J(k)(·) (5c)

where I(·) and J(·) are enumerations on the covered con-
straints and variables respectively.

Matchings which are complete on X allow for the calcu-
lation of all the unknown variables, in a structural sense.

Since there is an M for G+ complete on X+, there are
|C+| − |X+| unmatched constraints on |C+|. Let the set of
unmatched constraints on G+ be C+u ; this set is not unique,
because M is not necessarily unique. At the same time, all
of the variables of X+ are structurally calculable.

As a result, the values of the variables of any cu ∈ C+u are
known and cu can be evaluated into a residual r = fu,0(·).
Assuming that the system operates on its nominal condition
all the equations in C should hold and thus cu should
evaluate to 0. If cu or a constraint which contributed to the
evaluation of the related variables fails, then the residual
should depart from 0. Thus, these unmatched constraints
constitute candidate ARRs.

Any ARR cu can detect faults occurring on itself as
well as all the constraints which are reachable from cu in
G′d. This information is used to construct the detectability
and isolability matrices, which characterize the diagnostic
performance of the system.

C. MSOs
In order to minimize the fault candidates for each trig-

gered residual, it is of interest to find residuals which are
sensitive to as few faults as possible. The notion of Minimal
Structurally Overdetermined sets (MSOs) is useful for that
purpose [9]. An MSO is a set of equations C∗ ⊆ C whose
corresponding graph G∗= {C∗,X ∗, E∗} has the following
properties:

1) X ∗ = var(C∗)
2) E∗ = {(ci, xk) ∈ E : ci ∈ C∗, xk ∈ X ∗}
3) G∗ = G∗+

4) |C∗| = |X ∗|+ 1

From each MSO |C∗| different residual generators can be
extracted, one for each ci ∈ C∗. The rest of the equations
in C∗ form a just-constrained system for which a perfect
matching is sought [9].

In order to reduce the number of candidate MSOs, it is
beneficial to consider only MSOs with at least one equation
that can fail. A residual generator which involves only
constraints which cannot fail is not useful and clutters the
residual selection procedure.

III. DIFFERENTIAL-ALGEBRAIC EQUATION
SYSTEMS

Given a just-constrained system G and a matching onto
it M, one can draw conclusions on how hard it is to
solve by first partitioning it into its König-Hall components
{G1,G2, ...,Gi}. This is also known as the fine Dulmage-
Mendelsohn decomposition [16]. The corresponding match-
ings are {Mi}. If all Gi are size-1, then the system is
triangular and can be solved trivially by back-substitution.

If some Gi are of larger size, then the system is block-
triangular: simultaneous equation systems must be solved for
the evaluation of the corresponding residual generator. For
each Gi two cases exist:

1) @dj ∈ Gi ⇒ An algebraic equation system must be
solved. We assume the most general case of a non-
linear algebraic system and will not examine further
this case; non-linear system solvers are usually avail-
able in all modern computing systems.

2) ∃dj ∈ Gi ⇒ Gi represents a DAE at the most general
case.

A time-invariant DAE system is a set of differential and
algebraic equations. There are many formulations of a DAE,
but the most useful to our analysis is the semi-explicit one:

cd(ẋd,xd,xa) = 0 (6a)
ca(xd,xa) = 0 (6b)

where ∂cd/∂ẋd is non-singular. xd is the vector of the
dynamic variables with nd elements (similar to an ODE
formulation) and xa is the vector of the algebraic variables
with na elements. (6a) capture the dynamics of the system
while (6b) impose additional algebraic constraints [17].

The differential index of a DAE is the number of differ-
entiations all or a subset of equations need to undergo, in
order to convert the DAE into an ODE. The difficulty of the
solution of the DAE depends a lot on how high its index
is. DAEs with index 0 and 1 are considered much easier to
solve than DAEs with higher indices and for that reason,
DAEs with index 2 and above are called high-index DAEs.
High-index problems are hard to solve with generic solvers,
because the solution accuracy may be low, regardless of the
size of the time step O(1), or even have an inverse relation
with the step size O(1/h). In these cases, specialized, per-
problem solvers may need to be designed [17].

We shall now investigate the structure of the DAEs under-
lying each Gi, as it has an impact on its solvability.

A. Producing Semi-Explicit DAE Systems
The characteristics of the matching associated with a DAE

are decisive to its solvability. As a first step, it must be ver-
ified that all dj∈Gi are matched for their non-differentiated
variable, since dynamic systems are solved by integration,
not differentiation, i.e. Mi obeys integral causality [8],[11].
Any matching violating this check must be discarded and
another must be sought, in order to solve this system.

Afterwards, all explicit differentiation constraints di are
removed from Mi. They are implied in the following anal-
ysis and do not need to be taken into account explicitly. The
resulting DAE (previously presented in (5)) is of the, most
general, form:

ẋd = fd(xd,xa, ẋd) (7a)
xa = fa(xd,xa, ẋd) (7b)

This is not a standard DAE structure and no straightforward
conclusions can be made on its solvability properties. In the
interest of ensuring the solvability of any system associated
with Mi, no such DAE should result from the matching
algorithm. Instead, we should aim for a semi-explicit formu-
lation.

To ensure that all DAEs resulting from Mi will be semi-
explicit, the differential part (7a) is treated first.

Proposition 1: Constraints in G which include more than
one differentiated variable and can be solved for one or more
differentiated variables shall be removed from the model.
Mathematically, the set of these equations can be defined as:{

cd :∈ C : |varḋ(cd)| > 1 ∧ |vars,ḋ(cd)| ≥ 1
}

(8)

where

varḋ(ci) = {xj ∈ var(cj) : xj ∈ XD} (9)

vars,ḋ(ci) = {xj ∈ vars(ci) : xj ∈ XD} (10)

The second part of the logical expression (8) inhibits
unnecessary equation removals; if an equation cannot be
solved for any differentiated variable, then it can never be
included as a differential equation in any DAE.

Removing equations results in loss of detectability per-
formance. A more conservative approach is to substitute
in the offending equation as many derivatives as possible
with another analytic expression, until it contains only one
differentiated variable, which can be solved for, e.g. for the
equation of the course angle ([14], see also Section IV):

χ = atan2(ė, ṅ)⇒
χ = atan2 (ė, (cθcψ)u+ (−cφsψ + sφsθcψ)v

+(sφsψ + cφsθcψ)w) (11)

This reduces the isolability performance of the overall FD
system and the final decision lies with the system designer.

So far, it is certain that each resulting DAE system will
have the structure

ẋd = fd(xd,xa) (12a)
xa = fa(xd,xa, ẋd) (12b)

This is also non-standard, due to the ẋd terms in fa.
Converting this system into a semi-explicit DAE system
would require non-linear symbolic manipulation. Notably,
contemporary academic software on Fault Diagnosis [18]
cannot handle this difficulty.

Example 2: The 1-D velocity of a point mass is stabilized
by a PD controller, generating the driving force F :

v̇ = F/m (13a)
F = −kP v − kDv̇ (13b)

(13) is not a semi-explicit DAE, although it is index-1, as
it will be shown:

(13)⇒
{
v̇ = (−kP v − kDv̇)/m
F = −kP v − kDv̇

⇒
{
v̇ = −kP /(m+ kD)v
F = −kP v + kDkP /(m+ kD)v

d/dt⇒
{
v̇ = −kP /(m+ kD)v

Ḟ = k2Pm/(m+ kD)
2v

(14)

which is an ODE. �
Even though this example is trivial to convert into a

solvable ODE, it demonstrates that even the simplest systems
might pose problems to an automated FDI system which
isn’t capable of symbolic manipulations. Indicatively, MAT-
LAB’s symbolic solver (solve) cannot solve for symbolic
functions, in presence of their derivative (v, as a function of
time, in this case).

Proposition 2: In the system G, no differentiated variable
may appear more than twice, of which one is reserved for

the explicit differentiation equation, i.e. the system must have
the property.

|eqs(xdi)| ≤ 2, i = 1, 2, ..., nd (15)

To accomplish this, one can modify the mathematical
model of the system, so that each derivative appears only
once throughout the entire model, by substituting ẋdi with
another expression where needed. In Example 2, the system
can be modified to

v̇ = a (16a)
a = F/m (16b)
F = −kP v − kDa (16c)

which is an index-1 semi-explicit DAE.
Theorem 1: Provided a system complies with Propositions

1 and 2, any DAE resulting from a causal and realizable
matching is a semi-explicit DAE with structural index 1.

Proof: Because of Propositions 1 and 2, the DAE has
the semi-explicit structure

ẋd = fd(xd,xa) (17a)
xa = fa(xd,xa) (17b)

(17) has structural index 1 iff the Jacobian I − ∂fa/∂xa
has full structural rank [12]. In the most general case, and
because of Assumption 2, the Jacobian has the structure

I− ∂fa
∂xa

=


1

1
X

X
. . .

1

 (18)

which by definition of its structural pattern [12] results to
a full structural rank (X represents potentially non zero
elements). Thus, the DAE system has structural index 1.
Moreover, the Jacobian is well-defined because of Assump-
tion 1.

Thanks to Theorem 1, evaluating the structural rank of
each DAE is unneeded, which is an O(n3) problem [12]; any
residual generator resulting from SA will be at the hardest a
semi-explicit DAE with structural rank 1.

B. Forms of Resulting DAEs

Let us now examine two significant cases, regarding the
above result.

Case 1: The DAE system is of the form

ẋd = fd(xa,xd) (19a)
xa1 = fa1(xa2, xa3, . . . , xan,xd) (19b)
xa2 = fa2(xa3, xa4, . . . , xan,xd) (19c)

...
xai = fai(xa(i+1), xa(i+2), . . . , xan,xd) (19d)

...
xan = fan(xd) (19e)

with none of the arguments of each fai mandatory.

In this case, the evaluation of xai depends only on the
values of algebraic variables with higher i-index, which
results in a pure back-substitution chain. No algebraic loop
(algebraic equation system) needs to be solved and the sys-
tem is guaranteed to be solvable, as a triangular matrix with
non-zero diagonal elements. The corresponding Jacobian is:

I− ∂fa
∂xa

=


∂xa1

∂xa1
− ∂fa1

∂xa2
. . . − ∂fa1

∂xan

...
. . .

−∂fan

∂xa1
−∂fan

∂xa2
. . . ∂xan

∂xan



=


1

1
X

0
. . .

1

 (20)

This form can be directly implemented by an automated
computing system only using function evaluations, as dic-
tated by the evaluation chain. The complexity of the calcu-
lation of each residual is O(2nd + na).

Case 2: The second, most general case has the structure
of (18), i.e., the algebraic part is not a triangular system of
equations.

As has already been mentioned, the analytic solution for
xa is very hard to carry out with symbolic computations in
an embedded system, or even impossible altogether, since
fa are non-linear in the general case. For that reason, xa
is commonly evaluated numerically, as the result of an
optimization problem.

The optimization problem is solved in recursive steps,
usually employing variable-step methods. It is not considered
a computationally hard problem, especially if the initializa-
tion point is close to the solution, which can be achieved
with high sampling rates. Still, it is the source of a non-
deterministic delay which needs to be taken into account.

However, for the numerical solution to be possible, I −
∂fa/∂xa must be numerically non-singular. This is equiva-
lent to requiring that the numerical rank be the same as the
structural rank, which may not always hold, even though it
is the common case.

Unfortunately, it is not possible to identify the singularity
of that Jacobian before the evaluation of the residual gener-
ator. Calculating the finite-difference derivative ∂fa/∂xa to
verify the solvability of the algebraic loop would require a
linearization point for xa, whose value is not available a-
priori solving the system.

Reasonable initialization values could be useful in this
case. Still, fallback routines in case the numerical solver halts
with singularity errors should be implemented.

However, a significant outcome when the semi-explicit
DAE does have a constant differential index, is that the initial
conditions do not have to be consistent, because the dynamic
degrees of freedom equal the number of dynamic variables
[12]. Arbitrary initialization values can be used to begin the
residual evaluation.

IV. UAV MODEL
As our research interests include FD in fixed-wing UAVs,

in this section, a large-scale mathematical model of a fixed-
wing, electric propulsion UAV is given, which is set up so

TABLE I: Proposed Fixed-Wing UAV Model - Kinematics
Label Constraint vars
c1 ṅ = (cθcψ)u+ (−cφsψ + sφsθcψ)v ṅ
c2 ė = (cθsψ)u+ (cφcψ + sφsθsψ)v ė

c3 ḋ = (−sθ)u+ (sφcθ)v + (cφcθ)w ḋ

c4 φ̇ = p+ tan θsφq + tan θcφr φ̇, p

c5 θ̇ = cφq − sφr θ̇, q

c6 ψ̇ = sφ/cθq + cφ/cθr ψ̇, r

c7 Vi =
√
u2 + v2 + w2 Vi

c8 χ = atan2
(
(cθsψ)u+ (cφcψ + sφsθsψ)v, χ

(cθcψ)u+ (−cφsψ + sφsθcψ)v
)

c9 γ = sin−1
(
((−sθ)u+ (sφcθ)v + (cφcθ)w) γ, Vi

/Vi)
c10 Vg = Vicγ Vg , Vi, γ
c11 ur = u− uw ur, u, uw
c12 vr = v − vw vr, v, vw
c13 wr = w − ww wr, w, ww
c14 α = atan2 (wr, ur) α, ur, wr
c15 β = sin−1 (vr/Va) vr, Va
c16 Va =

√
u2r + v2r + w2

r Va

TABLE II: Proposed Fixed-Wing UAV Model - Inertial
Label Constraint vars
c17 m = m0 +me m,m0,me
c18 pCM,x = (pme,xme) /m pCM,x
c19 pCM,y = (pme,yme) /m pCM,y
c20 pCM,z = (pme,zme) /m pCM,z

c21−c23 jxx = j0,xx + (p2me,y
+ pz2me,z

) jxx, j0,xx

·
(

2m2
e+m0me

m0+me

)
etc. etc.

c24−c29 jxy = j0,xy − pme,xpme,y

(
m0me
m0+me

)
jxy , j0,xy

etc. etc.
c30−c38 jIij = J−1

ij jIij

as to comply with Propositions 1 and 2. Thus, any DAE
resulting from SA will be semi-explicit and have structural
index 1.

It draws from first-principles modeling and common lit-
erature models. Its high level of detail is meant to make
it versatile and suitable for a wide range of systems and
configurations. The complete list of model constraints is enu-
merated in Tables I through X, broken down into individual
components. The first column contains the constraint label,
the second the constraint itself while the last one is filled
with the set vars(ci). The sine and cosine functions are
abbreviated as s· and c· respectively.

The kinematic equations (Table I) are common in the
literature [14]. Table II refers to the inertial model, which
provides for an additional mass me in the position pme

[19]. Rigid-body dynamics (Table III) are supplemented
with typical linear-coefficient aerodynamics modeling (Table
V) [14]. Propulsion is represented by polynomial propeller
performance curves (Table VI) [20] and an electric motor
model (Table VII).

Standard models for Earth curvature (VIII) [21], atmo-
sphere (IX) [22] and wind (X) [14] complete the model.

From the initial set of equations, only a few needed
processing to comply with Propositions 1 and 2. More
specifically: the relation between inertial velocity and inertial
position derivatives was removed and the ground course and
flight path angle relations were re-stated to avoid inertial
position derivatives.

V. IMPLEMENTATION & SIMULATION
To demonstrate the performance of the proposed model,

isolability analysis and real time simulations were performed.

TABLE III: Proposed Fixed-Wing UAV Model - Dynamics
Label Constraint vars
c39 c1 = q (jzxp+ jzyq + jzzr) c1

−r (jyxp+ jyyq + jyzr)
c40 c2 = r (jxxp+ jxyq + jxzr) c2

−p (jzxp+ jzyq + jzzr)
c41 c3 = p (jyxp+ jyyq + jyzr) c3

−q (jxxp+ jxyq + jxzr)
c42 ṗ = jI11 (Tx − c1) ṗ

+jI12 (Ty − c2) + jI13 (Tz − c3)
c43 q̇ = jI21 (Tx − c1) q̇

+jI22 (Ty − c2) + jI23 (Tz − c3)
c44 ṙ = jI31 (Tx − c1) ṙ

+jI32 (Ty − c2) + jI33 (Tz − c3)
c45 u̇ = rv − qw + Fx/m u̇, Fx
c46 v̇ = −ru+ pw + Fy/m v̇, r, Fy
c47 ẇ = qu− pv + Fz/m ẇ, q, Fz
c48 Fx = Fg,x + Fa,x + Fp,x Fx, Fg,x, Fa,x, Fp,x
c49 Fy = Fg,y + Fa,y + Fp,y Fy , Fg,y , Fa,y , Fp,y
c50 Fz = Fg,z + Fa,z + Fp,z Fz , Fg,z , Fa,z , Fp,z
c51 Tx = Ta,t,x + Tp,t,x Tx, Ta,t,x, Tp,t,x
c52 Ty = Ta,t,y + Tp,t,y Ty , Ta,t,y , Tp,t,y
c53 Tz = Ta,t,z + Tp,t,z Ty , Ta,t,y , Tp,t,y

TABLE IV: Proposed Fixed-Wing UAV Model - Gravity
Label Constraint vars
c54 Fgx = −sθ mg Fgx, θ
c55 Fgy = sφcθ mg Fgx, φ
c56 Fgz = cφcθ mg Fgz , φ, θ,m, g

TABLE V: Proposed Fixed-Wing UAV Model - Aerodynamics
Label Constraint vars
c57 Fax = −cαFD − cαsβFY + sαFL Fax, FD
c58 Fay = −sβFD + cβFY Fay , FY
c59 Faz = −sαcβFD − sαsβFY − cαFL Faz , FL

c60−c62 dxCL = pCL,x − pCM,x etc. dxCL, pCL,x,
pCM,x

c63 Tax,t = Tax − dzCLFay + dyCLFaz Tax,t, Tax
c64 Tay,t = Tay + dzCLFax − dxCLFaz Tay,t, Tay ,

dzCL
c65 Taz,t = Taz − dyCLFax + dxCLFay Taz,t, Taz ,

dyCL
c66 q̄ = 0.5ρV 2

a q̄, ρ, Va
c67 FD = q̄SCD FD, CD
c68 FY = q̄SCY FY , CY
c69 FL = q̄SCL FZ , CZ
c70 CD = CD,0 + CD,αα+ CD,q

c
2Va

q CD
+CD,δeδe

c71 CY = CY,0 + CY,ββ + CY,p
b

2Va
p CY

+CY,r
b

2Va
r + CY,δaδa + CY,δr δr

c72 CL = CL,0 + CL,αα+ CL,q
c

2Va
q CL

+CL,δeδe
c73 Tax = q̄SbCl Tax, Cl
c74 Tay = q̄ScCm Tay , Cm
c75 Taz = q̄SbCn Taz , Cn
c76 Cl = Cl,0 + Cl,ββ + Cl,p

b
2Va

p Cl

+Cl,r
b

2Va
r + Cl,δaδa + Cl,δr δr

c77 Cm = Cm,0 + Cm,αα+ Cm,q
c

2Va
q Cm

+Cm,δeδe
c78 Cn = Cn,0 + Cn,ββ + Cn,p

b
2Va

p Cn

+Cn,r
b

2Va
rCn,δaδa + Cn,δr δr

TABLE VI: Proposed Fixed-Wing UAV Model - Propulsion
Label Constraint vars
c79 Fpx = Ctρn2

pD
4 Fpx, Ct

c80 Fpy = 0 Fpy
c81 Fpz = 0 Fpz
c82 Tpx = Pp/ωp Tpx, Pp
c83 Tpy = 0 Fpy
c84 Tpz = 0 Fpz

c85−c87 dxp = pp,x − pCM,x etc. dxp, pp,x, pp,x
c88 Tpx,t = Tpx − dzpFpy + dypFpz Tpx,t, Tpx
c89 Tpy,t = Tpy + dzpFpx − dxpFpz Tpy,t, Tpy
c90 Tpz,t = Tpz − dypFpx + dxpFpy Tpz,t, Tpz
c91 np = ωp/(2π) np, ωp
c92 Ja = Va/(npD) Ja, Va, np
c93 Ct = Ct(Ja) Ct
c94 Pp = Cpρn3

pD
5 Pp, Cp

c95 Cp = Cp(Ja) Cp

TABLE VII: Proposed Fixed-Wing UAV Model - Motor
Label Constraint vars
c96 ω̇p = (Pmot − Pp)/(ωp(Jp + Jmot)) ṅp, Pmot, Pp
c97 ωp = ωmot np, nmot
c98 2πωmot = KvEi nmot, Ei
c99 Ei = Vmot − ImotRm Ei, Vmot, Imot
c100 Pmot = EiIi Pmot
c101 Ii = Imot − I0 − Ei/R1 Ii, Imot, Ei
c102 Pelec = VmotImot Pelec
c103 Vmot = (Vbat − Imot(Rbat +RS))δt Vmot

A. Adding Sensors and Parameters

The model presented in the previous section does not con-
tain any sensors purposely. For each aircraft and application
the sensor suit may vary and so does the available knowledge
of the model parameters.

For this analysis, it is presumed that accelerometer, gy-
roscope, AHRS, GPS, barometer, thermometer, Pitot probe,
wind vanes, voltage, current and motor RPS sensor readings
are available. The corresponding equations are added in Table
XI (s1−s22).

The control input information is inserted with constraints
c117 − c120, the initial mass m0 is considered known (c121),
no additional mass is placed (c125 − c128) and the value of
gravity acceleration is set (c129).

Known, fixed values are applied for the model parameters
pp,pCL,Jnom, S, b, c, CD,∗, CY,∗, CL,∗, Cl,∗, Cm,∗,
Cn,∗, D, Jmot, Jp, Rm, R1, Rbat, Rs, I0, L0,M0, R

∗.
The set of equations which were selected to be susceptible

to faults was c67 − c78, c79 − c81, c83 − c84, c93 − c95, c96 −
c99, c101, c103, s1 − c22, c117 − c128. No fault modeling was
taken into account nor it is required for this method.

The equivalent structural model of the proposed fixed-
wing UAV model was encoded into a graph representation,

TABLE VIII: Proposed Fixed-Wing UAV Model - Earth
Label Constraint vars
c104 n = (RM + z)s(lat−lat0) n, z, lat, lat0
c105 e = (RN + z)s(lon−lon0) e, z, lon, lon0

c106 d = −(z − z0) d, z, z0

TABLE IX: Proposed Fixed-Wing UAV Model - Atmosphere
Label Constraint vars
c107 h = (r0 · z)/(r0 + z) h
c108 z = (r0 · h)/(r0 − h) z
c109 T = T0 + L0 · (h− h0) T, T0

c110 P = P0 (T0/T (h))

(
g0·M0
R∗·L0

)
P, P0

c111 h = T0/L0

(
(P/P0)

g0·M0
R∗·L0 − 1

)
+ h0 h, h0

c112 ρ = (P ·M0)/(R∗ · T) ρ, P, T
c113 Pt = P + 0.5ρV 2

a Pt, P, ρ, Va

TABLE X: Proposed Fixed-Wing UAV Model - Wind
Label Constraint vars
c114 uw = cθcψvw,n + cθsψvw,e uw
c115 vw = (sφsθcψ − cφsψ)vw,n vw

+(sφsθsψ + cφcψ)vw,e
c116 ww = (cφsθcψ + sφsψ)vw,n ww

+(cφsθsψ − sφcψ)vw,e

TABLE XI: Measurement, Input and Parameter Constraints
Label Constraint Subsystem vars
s1 am,x = Fx/m+ sθg Accelerometer Fx, θ
s2 am,y = Fy/m−sφcθg Fy , φ
s3 am,z = Fz/m−cφcθg Fz , φ, θ
s4 pm = p Gyroscope p
s5 qm = q q
s6 rm = r r
s7 φm = φ AHRS φ
s8 θm = θ θ
s9 ψm = ψ ψ
s10 latgps = lat GPS lat
s11 longps = lon lon
s12 zgps = z z
s13 Vg,gps = Vg Vg
s14 χgps = χ χ
s15 Pbar = P Barometer P
s16 Tm = T Thermometer T
s17 Pt,m = Pt Airspeed Sensor Pt
s18 αm = α Wind Vanes α
s19 βm = β β
s20 Vmot,m = Vmot Voltage Sensor Vmot
s21 Imot,m = Imot Current Sensor Imot
s22 ωm,m = ωm RPM Sensor ωm
c117 δa = δa,inp System Inputs δa
c118 δe = δe,inp δe
c119 δt = δt,inp δt
c120 δr = δr,inp δr
c121 m0 = m0,known Inertial m0

c122−c124 J0 = J0,known j0,ij
c125 me = 0 Additional Mass me

c126−c128 pme = 0 pme

c129 g = g0 g

suitable for parsing by computer programs. Software was
written under the ROS framework [23], which implemented
the Fault Diagnostic functionality in real-time.

B. Detectability and Isolability Performance

Most of the faults taken into account were detectable.
Best-case isolability performance for the initial-nominal
model is summarized in Figure 1. The only faults not covered
are c103 and c119.

By inspecting the fault isolability matrix, it can be con-
cluded that almost all faults can be isolated within the com-
ponent, with the exception of some cross-coupling between
aerodynamics and the propeller model, which is expected.

C. Simulation

In order to evaluate the feasibility and performance of
the extracted residuals, a simulation environment was con-
structed. A flight simulator was programmed, built on top
of the Gazebo robot simulator [24]. Custom propulsion and
aerodynamics model plugins were added to the UAV model.
A screenshot of the simulation environment can be seen
in Figure 2. The resulting mathematical model which was
simulated was of greater detail than the one provided to the
Fault Diagnosis software.

Among the residuals which were generated from the
structural model, we choose to demonstrate one which in-
corporates a DAE system.

Aerodynamics

Propeller

Motor

Accelerometer

Kinematic Sensors

Inertial

Fig. 1: Isolability Performance

Fig. 2: A Screenshot of the Simulation Environment

It consists of the equations c91, c92, c94, c95, c96, c97, c99−
c101, c109, c110, c112, c113, s17, s20, s21 with s22 being used
as the unmatched constraint. We can verify that the corre-
sponding Jacobian is triangular with ones in each diagonal
element. Hence the system is always solvable within the
domain of the involved constraints with back-substitution.
The calculations are omitted due to lack of space.

The measurements were corrupted with non-zero mean
Gaussian white noise, with characteristics typical of each
sensor. The model parameters were provided to the FDI
system with a 10% margin of error. The initial value of
the DAE dynamic variable was randomly selected from the
operating envelope.

The response of the residual to a fault on the propeller,
namely damage in one of its blades, is examined. The
damage, and the corresponding loss of thrust and consumed
power, are implemented as a change of the polynomial
coefficients in constraints c95 and c93. The fault is introduced
during a 40 s flight segment at time 31.5 s. The residual
response can be seen in Figure 3.

After initialization of the residual generator, the residual
reduces close to zero, as the calculated nm state converges
to its real value. Indeed, there is no consistency requirement
for the initial condition. Even though the value of nm is
not constant during the pre-fault flight, the residual remains
inside a bounded region of trust.

As soon as the propeller fault occurs, the residual gradu-

15 20 25 30 35 40
−250

−200

−150

−100

−50

0

50

100

Fault Occurence

time (s)

Fig. 3: Residual Response

ally but quickly builds up and exceeds detection thresholds
within seconds.

VI. CONCLUSIONS
Structural Analysis is a formidable option for automated

Fault Diagnosis on large-scale systems. In this work, the po-
tential existence of Differential Algebraic Equation systems
within residual generators, resulting from SA, on dynamic
systems was discussed as well as the issue of their solvability
restrictions, regarding their differential index.

Two conditions were given for the mathematical model of
any dynamic system; if a model is adapted to satisfy them,
it is guaranteed that it, or any submodel, contains only semi-
explicit DAEs with structural index 1, which has significantly
better solvability characteristics.

Focusing on fixed-wing UAVs, a large-scale mathematical
model was given which complies to these conditions and
SA was performed on it. A standard set of sensor and faults
was added to the model and isolability analysis was carried
out. A simulation presenting the performance of an example
residual generator containing a DAE was carried out.

Future directions of this work include the investigation
of more factors which affect the numerical evaluation of
residuals and the experimental verification of our findings.

REFERENCES

[1] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis
and fault-tolerant control, 2nd ed. Springer Berlin Heidelberg, 2006.

[2] R. Patton, R. Clark, and P. Frank, Issues of fault diagnosis for dynamic
systems. Springer, 2000.

[3] K. P. Valavanis and G. Vachtsevanos, Handbook of Unmanned Aerial
Vehicles, K. P. Valavanis and G. J. Vachtsevanos, Eds. Springer
Netherlands, 2015.

[4] G. Wild, J. Murray, and G. Baxter, “Exploring Civil Drone Accidents
and Incidents to Help Prevent Potential Air Disasters,” Aerospace,
2016.

[5] J. Marzat, H. Piet-Lahanier, F. Damongeot, and E. Walter, “Model-
based fault diagnosis for aerospace systems: a survey,” Journal of
Aerospace Engineering, 2012.

[6] M. Fravolini, V. Brunori, G. Campa, M. Napolitano, and M. La
Cava, “Structural Analysis Approach for the Generation of Structured
Residuals for Aircraft FDI,” IEEE Transactions on Aerospace and
Electronic Systems, 2009.

[7] R. Izadi-Zamanabadi, “Structural analysis approach to fault diagnosis
with application to fixed-wing aircraft motion,” in Proceedings of the
2002 American Control Conference, 2002.

[8] V. Flaugergues, V. Cocquempot, M. Bayart, and M. Pengov, “On non-
invertibilities for Structural Analysis,” 21st International Workshop on
Principles of Diagnosis, 2010.

[9] M. Krysander and J. Aslund, “An Efficient Algorithm for Finding
Over-constrained Sub-systems for Construction of Diagnostic Tests,”
in 16th International Workshop on Principles of Diagnosis), 2005.

[10] V. Flaugergues, V. Cocquempot, M. Bayart, and M. Pengov, “Struc-
tural Analysis for FDI: a modified, invertibility-based canonical de-
composition,” in Proceedings of the 20th International Workshop on
Principles of Diagnosis, 2009.

[11] G. Zogopoulos Papaliakos and K. J. Kyriakopoulos, “On the selection
of calculable residual generators for UAV fault diagnosis,” in 24th
Mediterranean Conference on Control and Automation (MED), 2016.

[12] J. Unger, A. Kröner, and W. Marquardt, “Structural analysis of
differential-algebraic equation systemstheory and applications,” Com-
puters & Chemical Engineering, 1995.

[13] R. d. P. Soares and A. R. Secchi, “Structural analysis for static and
dynamic models,” Mathematical and Computer Modelling, vol. 55, no.
3-4, pp. 1051–1067, 2012.

[14] B. Stevens, F. Lewis, and E.N. Johnson, Aircraft Control and Simula-
tion, 3rd ed. Wiley, 2016, no. 9.

[15] A. L. Dulmage and N. S. Mendelsohn, “Coverings of bipartite graphs,”
Canadian Journal of Mathematics, 1958.

[16] A. Pothen and C.-J. Fan, “Computing the block triangular form of a
sparse matrix,” ACM Transactions on Mathematical Software, vol. 16,
no. 4, pp. 303–324, dec 1990.

[17] K. E. Brenan, S. L. V. Campbell, and L. R. Petzold, Numerical solution
of initial-value problems in differential-algebraic equations, 1996.

[18] E. Frisk, “Fault Diagnosis Toolbox - A Mat-
lab toolbox for fault diagnosis.” [Online]. Available:
http://www.fs.isy.liu.se/Software/FaultDiagnosisToolbox/

[19] J. Peraire and J. Widnall, “Lecture L26 - 3D Rigid Body Dynamics :
The Inertia Tensor,” in Dynamics, 2008.

[20] D. Allerton, Principles of flight simulation. Wiley, 2009.
[21] W. Mulaire, “Department of Defense: World Geodetic System 1984,”

National Imagery and Mapping Agency, Tech. Rep., 2000.
[22] “US Standard Atmosphere, 1976,” National Oceanic and Atmo-

spheric Administration, National Aeronautics and Space Adminisra-
tion, United States Air Force, Tech. Rep., 1976.

[23] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[24] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2004.

