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Abstract— This paper focuses on real-time estimation of
the aerodynamic model parameters of small-scale fixed wing
Unmanned Aerial Vehicles (UAVs) without the aid of wind-
tunnel experiments, using exclusively flight data. The key tool
of the following analysis centers around the principles of Total
Least Squares estimation. Contrary to Ordinary Least Squares,
this method accounts for errors in both explanatory data and
variables to-be-explained. This is a highly desirable property
for UAVs equipped with low-cost sensor systems. The proposed
implementation combines both batch and real-time schemes,
while deals efficiently with the problem of Insufficient System
Excitation. On-line adaptation to model changes is performed
by applying a Variable Forgetting Factor to the estimation data.
Finally, a Monte Carlo approach is developed for uncertainty
estimation regarding compound aerodynamic variables.

I. INTRODUCTION

System Identification in the discipline of aerodynamics in-
corporates various Parameter Identification (PId) techniques
to model the exerted forces and moments on an airframe.
Core to this process is the determination of the stability
and control derivatives [1], which govern the relationship
between flight dynamics and fundamental aircraft variables.

The escalating complexity associated with Unmanned
Aerial Vehicles (UAVs) renders the identification of the
aerodynamic model pivotal to various cutting edge control
systems (adaptive control, fault tolerant control, accurate
flight simulators etc). For this reason, a considerable amount
of research has been conducted in the field. Providing
feasible solutions to such prerequisites is a non-trivial goal,
especially in small-scale UAVs. Payload, cost and computa-
tional constraints are dominant factors in the design of such
PId algorithms. Moreover, costly and time consuming wind
tunnel tests cannot be considered a viable option for many
research groups with limited resources [2]. Contrariwise, the
characterization of the aerodynamic model by means of flight
data can overcome such deficiencies while providing the
respective confidence intervals for the parameter estimates.

Several attempts to identify the dynamics of UAVs have
been made in the past years. Many former studies centered
their analyses on Maximum Likelihood Estimation, using
either output error [3],[4] or hybrid Neural Network (NN) ap-
proaches [5]. Nevertheless, output error techniques hinge on
numerical methods, leading to convergence issues [1], while
they do not account for process noise [3]. It is also well estab-
lished that such methods rely on batch-processing and are not
suitable for real-time implementations[6], without providing
quantitative measures of the accuracy of the estimates.On
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the other hand, training of a NN can be time and resource
consuming, while processes with equivocal internal structure
are often undesirable. Other typical solutions propose the
use of the Ordinary Least Squares (OLS) estimator, for both
batch and real-time applications [1],[7], unfortunately with-
out allowing for uncertainties in the explanatory variables,
leading to biased estimates. This deficiency can be overcome
by taking a unified approach to the state estimation/parameter
identification problems and developing a non-linear Kalman
Filter architecture (EKF, UKF) [8]. Arguably, this approach
requires a significant amount of fine tunning, while dealing
with one high dimensional estimation problem, instead of
decomposing it in lower dimension sub-problems. Finally,
filter convergence can be at stake without reliable a priori
estimates of the parameters [1].

This paper presents a fully developed, computationally
efficient PId procedure based on the Total Least Squares
(TLS) method [9],[10]. It is available both in batch and a
novel sequential implementation, endowed with parameter
tracking capabilities with the use of a Variable Forgetting
Factor, while lack of Persistent Excitation of the input signals
is handled by Principal Component Analysis. Finally, we
devised a Monte Carlo method for accurate uncertainty
quantification in synthetic aerodynamic variables, a crucial
step for securing the robustness and reliability of the process.

In Section II of this work the non-linear model of the UAV
is presented. In Section III the Total Least Squares estimator
is introduced, while in Sections IV and V the Variable For-
getting Factor and uncertainty quantification approaches are
presented, respectively. Simulation and experimental results
can be found in Section VI.

II. AIRCRAFT AERODYNAMIC MODEL

A fixed wing UAV is modeled as a 6-DoF rigid body. In
airborne aircraft, the applied forces and moments arise from
aerodynamics, gravity and propulsion. Gravitational forces
can be analytically calculated and propulsion forces and
torques can be modeled through engine ground tests [1].

Hence, the system identification problem reduces to the
determination of the aerodynamic forces (FA) and moments
(MA). These forces are commonly expressed in terms of the
non-dimensional aerodynamic coefficients:

FA = q̄S
[
−CD CY −CL

]ᵀ
(1)

MA = q̄S
[
bCl c̄Cm bCn

]ᵀ
(2)

with S being the wing reference area, b the wingspan, c̄
the mean aerodynamic wing chord and q̄ = 1

2ρV
2
a the

dynamic pressure, consisting of airspeed Va and air density ρ.
The non-dimensional aerodynamic force (CL, CD, CY ) and



moment (Cl, Cm, Cn) coefficients depend on fundamental
aircraft variables [1]. Using a Taylor series approximation,
a typical representation of the non-dimensional aerodynamic
model is:

CL = CL0 + CLαα+ CLqnqn + CLδεδε (3a)
CD = CD0 + CDαα+ CDα2α2 + CDqnqn + CDδεδε (3b)
CY = CY ββ + CY pnpn + CY rnrn + CY δrδr (3c)
Cl = Clββ + Clpnpn + Clrnrn + Clδrδr (3d)
Cm = Cm0 + Cmαα+ Cmqnqn + Cmδεδε (3e)
Cn = Cnββ + Cnpnpn + Cnrnrn + Cnδrδr (3f)

where α is the angle-of-attack, β is the sideslip angle,
{δe, δa, δr} are the control inputs (elevator, aileron and
rudder deflections) and the terms pn, qn, rn correspond to
the non-dimensional angular rates.

III. PARAMETER IDENTIFICATION

A model structure characterized by equations (3a)-(3f) is
a linear-in-the-parameters estimation problem. If the aircraft
state is known, aerodynamic PId centers around the deter-
mination of the set of parameters C·,· on the right side of
(3) which encapsulates the functional relationship between
independent variables and aerodynamic derivatives.

In generic terms, the model of an aerodynamic coefficient
y is given by:

y = Xθ (4)

where X ∈ RN×nθ is the matrix of inputs -or explanatory
variables-, θ ∈ Rnθ×1 is the vector of unknown parameters
and y represents the model output.

The inputs and outputs of the system are measured or
estimated up to a level of uncertainty such that:

Xm = X + ∆X (5)
z = y + ε (6)

where ∆X is the perturbation matrix of the explanatory
variables, ε is the measurement noise on the observed output,
Xm is the matrix of inputs and z is the observation vector.

As long as uncertainty is present in X , aerodynamic esti-
mation must be carried out by means of Errors-In-Variables
models. Simpler parameter estimation techniques such as
OLS fail to deliver unbiased estimates of the parameter
vector and cannot be considered as a consistent solution [11].

A. Total Least Squares

The method of TLS, introduced by [12], derived a robust
solution to overdetermined linear systems AX = B where
both A,B are perturbed by measurement errors. TLS pos-
tulates a unified approach to the problem by concatenating
Xm and z into the augmented data matrix

D =
[
Xm z

]
=
[
X y

]
+
[
∆X ε

]
= D0 +

[
∆X ε

]
(7)

consisted of the true values (D0) and the errors ([∆X ε]).
Additionally, an optimal TLS estimator in terms of Max-

imum Likelihood (ML), requires the elements of [∆X ε]
to be independent, zero mean, normally distributed random
variables of unitary variance [13]. Nevertheless, estimates of
the aircraft state are usually constructed from multiple data

sources with different precision. Consequently, measurement
errors are unequally sized (heteroscedastic) and/or correlated.
Thus, even if error statistics can be approximated by zero-
mean normal random variables, the unitary variance assump-
tion cannot be sustained.

For the purpose of this study, the augmented error matrix
will be assigned a simple yet efficient model:

[∆X ε] = EC (8)

E is a matrix of uncorrelated standard normal deviates and
C is the Cholesky factor of the error covariance matrix WT :

WT = CTC = E
(

[∆X ε]
T

[∆X ε]
)

(9)

Generalized Total Least Squares (GTLS) is an extension
of the TLS approach that allows for heteroscedasticity and/or
correlation in the errors [14]. This includes the rescaling of
data matrices, by inversing matrix C, so as to meet the ML
prerequisites:

D∗ = DC−1 = D∗
0 + [∆X ε]

∗ (10)

In the presence of measurement errors, D is of full rank
(rank(D) = nθ+1 ). GTLS is defined as the following rank
reduction problem which seeks for the closest rank-deficient
approximation of D:

min
θ̂,∆X̂,ε̂

∥∥∥ [∆X ε]
∗
∥∥∥
F

subject to :
(
D∗ −

[
∆X̂ ε̂

]∗)
C [θ − 1]

ᵀ
= 0 (11)

where ‖·‖F denotes the Frobenius norm. If C is positive-
definite, GTLS is proven to be a consistent estimator [15].

Singular Value Decomposition (SVD) [9] can be used to
solve the above optimization. First, the scaled data matrix of
eq. (10) is factorized as follows:

D∗ = USV T =
∑nθ+1

j=1
ujσjv

T
j (12)

where U ∈ RN×N ,V ∈ Rnθ+1×nθ+1 are orthonormal and
unitary matrices whose columns are denoted as uj , vj re-
spectively. The non-negative diagonal matrix S ∈ RN×nθ+1

contains the set of singular values of D∗ in decreasing order:

S = diag (σ1, . . . , σnθ , σnθ+1) (13)

Under sufficient excitation conditions [16], D∗ can be re-
duced to its closest rank-deficient approximation. By means
of SVD, this reduction is accomplished by [12]:

D̂∗
0 =

∑nθ

j=1
ujσjv

T
j (14)[

∆X̂ ε̂
]∗

= σnθ+1unθ+1v
T
nθ+1 (15)

where rank(D̂∗
0) = nθ. Subsequently, the estimated param-

eter vector is found as:[
θ̂ −1

]ᵀ
= hC−1vnθ+1 (16)

where vnθ+1 is the rightmost column vector of V and h is
a scalar multiplier so that the last element of the right hand
side of eq. (16) is −1.

The covariance of the estimated parameters can be approx-



imated by [10]:

cov(θ̂) ≈
σ2
nθ+1

N

(
1 + ‖θ̂‖

)2 (
XT
mXm − σ2

nθ+1I
)−1

(17)

B. The problem of Insufficient System Excitation
The performance of an online parameter estimator, relies

heavily on the Persistent Excitation of input signals [11].
However, this prerequisite cannot be guaranteed under all
flight conditions. In many instances, inputs do not exhibit
sufficient temporal variation or there exists a near linear
dependence between two or more explanatory variables.

In such cases of Insufficient System Excitation (ISE),
estimators may assign biased parameters, exhibit arbitrary
transients or even crash due to numerical problems [1],[6].
Problems with ISE are reflected in the near equal value of
the smallest singular values of D∗ where:

σ1 > σ2 > · · · > σk+1 ' σk+2 ' · · · ' σnθ+1 (18)

for some k < nθ. Note also that, due to its random nature,
the error matrix contributes its pseudo-information evenly to
the entire set of singular values by [6]:

∀
j

(
σ2
j

)
errors

= N − nθ (19)

Principal Component Analysis (PCA) can be used to
confine the estimation process in the space of sufficiently
excited data which can be found along the first k spectral
directions of D∗. This is equivalent to further rank-reduction
of D∗ and its approximation by:

D̂∗
SE =

∑k

j=1
ujσjv

T
j (20)

The rank discrimination parameter k is equal to the cardi-
nality of the set (card {}):

SSE={σj : σj ≥ (s/n + 1)
√
N − nθ, j ≤ nθ} (21)

where s/n denotes the minimal desired signal-to-noise ratio
between σj and the expected levels of uncertainty defined
by eq. (19). Under ISE, TLS has no unique solution as any
arbitrary combination of the last nθ + 1−k right singular
vectors vj can minimize equally well the criterion of (11):[

θ̂PCA
−1

]
= hk+1C

−1vk+1 + · · ·+ hnθ+1C
−1vnθ+1 (22)

On these terms, uniqueness of solution is inferred by apply-
ing a minimum Weighted Norm criterion:

θ̂ = min‖WθPCA‖22 (23)

which can be easily computed by a Weighted Least Squares
estimator [6].

C. On-line Implementation
A feasible real-time implementation of the method hinges

on efficient recursive SVD updating (RSVD). In all other
respects, a sequential approach to PCA-GTLS is straightfor-
ward, as summarized in Algorithm 1. Considering that the
costly matrix U is not involved in the estimation process and
V is of fixed dimensions, RSVD reduces to partial updates
of V , S. One of the various RSVD approaches can be found
in [17]. The function and use of the forgetting factor λF will
be explained in the following section.

Algorithm 1 Recursive PCA-GTLS

1: Initialize C,W, sn , λF , Nc ← 0
2: input: xm(t), z(t)
3: loop
4: d∗ ← [xm(t) z(t)]C−1

5: [St, Vt]← RSVD (d∗, St−1, Vt−1, λF )

6: if Nc > nθ then
7: k ← card{σi(t) >

(
1 + s

n

)√
Nc − nθ}

8: if k < nθ then
9: θ̂t ← min‖WθPCA‖22

10: else
11: θ̂t ← hC−1vnθ+1(t)

12: N ← N + 1
13: estimate covθ̂ using eq. (17)

IV. ADAPTATION TO PARAMETER CHANGES

Parameter tracking is integral to most real-time PId
schemes. Fault aware implementations, adaptive controllers
as well as systems with changing dynamics, all require timely
detection of model changes. To this end, the performance of
on-line estimators is governed by a forgetting factor (0 �
λF < 1) whose purpose is to constrain the identification
process in a weighted data window. Commonly, λF creates
an exponential window, moving towards the most recent
observations. However, this implies the fading of preced-
ing information, which may lead to estimate divergence in
cases of non-persistent excitation. On the other hand, if an
abrupt change to the system occurs, convergence to the new
parameter vector is slow.

Such deficiencies can be minimized by an adaptive ap-
proach to exponential forgetting, where fading is imposed
only when a model change is detected. The development of a
time-varying λF pivots on the evaluation of the a priori and
a posteriori residual vectors ν(t), r(t) in conjunction with
the expected uncertainty bounds of the measured quantity:

ν(t)=z(t)− x̂0(t)θ̂(t− 1) (24)

r(t)=z(t)− x̂0(t)θ̂(t) (25)

where x̂0(t) is the TLS-corrected input vector at the time
instant t. Under the multivariate normal assumption for
[∆X ε]

∗, x̂0(t) is the unique ML estimate of the noiseless
input x0(t) [10, p. 233],[18].

Ideally, the a posteriori residual vector of a successfully
estimated model must recover the corrupting signal of the
measurement. This objective can be met by imposing:

E
{
r2(t)

}
= σ2

ε0 (26)

where σ2
ε0 = E{ε2(t)} is the measurement noise variance

and its selection will be discussed further in Section V.
Based on the findings of [19] and the ML assumption for

x̂0(t), eq. (26) is satisfied by applying a Variable Forgetting
Factor (VFF) given by:

λF (t) =
σq(t)σε(t)

σν(t)− σε(t)
(27)



The terms σq, σν , σε derive from the signal power estimates:

σ2
q (t)=γ1σ

2
q (t− 1) + (1− γ1)q2(t) (28a)

σ2
ν(t)=γ1σ

2
ν(t− 1) + (1− γ1)ν2(t) (28b)

σ2
ε(t)=γ2σ

2
ε(t− 1) + (1− γ2)ν2(t) (28c)

q(t) =x̂T0 (t)
[
Π(t− 1)

]−1

x̂0(t) (29)

Π(t)=λF (t− 1)Π(t− 1) + x̂0(t)T x̂0(t) (30)

γ1, γ2 are user-defined weighting factors such that:

0� γ2 < γ1 < 1 (31)

In theory, it should hold that σν(t) ≥ σε(t). However, the use
of power estimates in eqs. (28a)-(28c) may cause fluctuations
of σν(t) in the vicinity of σε(t). Therefore, the robustness of
the solution can be enhanced by imposing λF (t) = 1 when:

σν(t) ≤ γ0σε(t) (32)

where 1 < γ0 ≤ 2. Otherwise, λF is evaluated as:

λF (t) = min

{
σq(t)σε(t)

ς + |σν(t)− σε(t)|
, 1

}
(33)

where the small positive constant ς prevents division by zero.

V. UNCERTAINTY ESTIMATION

For the reasons explained in Section III-A, WT must
be known up to a level of proportionality [13]. Otherwise,
artificial ill-conditioning of the optimization problem and
introduction of large variations to the estimated parameter
vector may occur [10, ch.3] Uncertainty in most explanatory
variables can easily be derived from sensor specifications or
state estimation processes. Nevertheless, this does not apply
to compound (synthetic) variables such as the aerodynamic
coefficients because these are obtained by combining multi-
ple sources of data pertaining to various errors.

Ordinarily, uncertainty quantification involves a Taylor
series approximation of the measurand. However, this im-
poses numerous simplifying assumptions on all variables,
restricting information content from the measurand. Non-
linearities, time varying uncertainties and non-gaussian input
distributions may yield overpredicted estimates of the error
variance [20],[21]. The Unscented Transform is popular for
UE, but not suitable for our application, since we seek an
offline algorithm which allows for arbitrary input PDFs.

We propose a Monte-Carlo (MC) method for the estima-
tion of uncertainty of compound variables, as they provide
an alternative, less restrictive framework for Uncertainty
Estimation (UE) which overcomes the above limitations.
Consider a measurand (Z), formed by a non-linear function
of random-variables (RVs) Ξi such that Z = f(Ξ1, . . . ,Ξn),
where all Ξj derive from analytical or empirical probability
density functions (PDFs) gΞj (ξj).

MC is based on the evaluation of f by repeatedly sampling
the inputs (Ξj) from their respective PDFs. After a sufficient
number of runs (M ), a numerical Cumulative Distribution
Function (CDF) can be obtained such that:

ĜZ(z) u P [Z ≤ z] (34)

Uncertainty is then quantified by inversing the CDF and
determining the bounds that correspond to a specified cov-
erage interval p (commonly p = 95%).

Prior to further analysis, a series of assumptions must
be taken into account. A) Systematic errors are known or
estimated and can be eliminated from the measurements. B)
All input uncertainties (∆Ξ) are known with reasonable pre-
cision. C) Reliable estimates of variance-covariance matrices
of inputs (ΣΞ) and input errors (Σ∆Ξ) are available.

If the above conditions are met, the error can be quantified
at each iteration as:

ε(Ξ) = Z − Z̃ = f(Ξ)− f(Ξ + ∆Ξ) (35)

where Ξ,∆Ξ are drawn from their respective (joint or
independent) PDFs.

Overall, we assume that input variates lie in known ranges
and we chose to draw values from a joint uniform distri-
bution. It should be noted that synthetic measurements of
the aerodynamic coefficients are constructed from quantities
which are often correlated. Correlated multivariate input
processes can be constructed by means of Sklar’s theorem
and a Gaussian Copula [22]. In the case of a joint rectangular
distribution, inputs are constructed as follows:

CG(u1, . . . , un)=ΦR
(
Φ−1(u1), . . . ,Φ−1(un)

)
(36)

⇒ (u1, . . . , un)∼U(0, 1) (37)

where CG : [0, 1]
n → [0, 1] is the gaussian copula, ΦR

denotes the joint CDF of a zero mean multivariate normal
distribution with covariance matrix ΣΞ and Φ−1 is the
inverse CDF of a standard normal RV.

The generated uniform variates are then shifted and scaled
so as to match a specified nominal range

[
r
(−)
, r

(+)

]
:

ξj = r
(−)

+
(
r
(+)
− r

(−)

)
uj (38)

Finally, based on the assumptions of the previous section,
errors can be generated from a multivariate gaussian PDF:

∆Ξ ∼ N (0,Σ∆Ξ) (39)

After an adequate number of iterations (M > 106),
uncertainty is quantified by the estimated CDF (Ĝε). Us-
ing a coverage interval of 95%, upper and lower bounds[
U

(−)
, U

(+)

]
can be specified as:[

U
(−)
, U

(+)

]
=
[
Ĝ−1
ε (0.025), Ĝ−1

ε (0.975)
]

(40)

For the purposes of this particular implementation, the last
diagonal entry of the error variance-covariance matrix (WT ,
eq. 9) which corresponds to the synthetic aerodynamic co-
efficients is formed as:

WT (nθ+1, nθ+1) = σ̂2
ε :=

[
max

(
|U

(−)
|, |U

(+)
|
)

1.96

]2

(41)

VI. RESULTS

Our proposed algorithm was implemented in interpreted
MATLAB and ran on a machine with an i7 4-core CPU and
16GB DDR3 RAM. For data taken at 100Hz, the processing
time per sample was 1.25ms, meaning that there is ample
calculation overhead for this algorithm to run in real-time.



A. Simulation Results
The proposed PId method has been tested against

simulation data. Our own last letter simulator
(github.com/Georacer/last letter) was used to provide a
detailed non-linear model of a small-scale fixed-wing UAV,
whose parameters are pre-defined and known. Additionally,
realistic wind disturbance in the form of Dryden gusts and
steady wind was imposed on the UAV. Virtual sensors were
sampled at 100 Hz and corrupted with white noise.

Figure 1 presents a characteristic response of the tracked
parameters for our proposed PCA-GTLS method, against
a typical sequential OLS implementation. The progress of
the singular values (σi) is displayed at the last subplot. The
trajectories of the estimated stability derivatives for the Co-
efficient of Drag (CD0, CDα, CDα2 ) are shown to converge
quickly after the application of the longitudinal excitation
maneuvers at t=250 s. More importantly, we verify that once
all of the singular values rise above the excitation threshold,
the parameters stabilize within their final regions. This makes
the evolution of the singular values a valuable descriptor of
the estimation process status. Contrariwise, the respective
OLS estimates fail to converge due to high levels of noise.

Variable and Constant forgetting schemes with TLS are
compared in Figure 2. At time t=50 s the Cm parameters are
abruptly changed, to simulate aircraft damage. The simulated
value for the Cmα coefficient can be seen in Figure 2a as a
red dashed line. The variable λF detects the model mismatch,
reduces its value (Figure 2b) and the estimate converges
almost immediately to the new parameter, within 10 s. Con-
versely, the constant λF does not adjust promptly, causing
parameter transients, as incompatible information before and
after the model change are combined. Moreover, constant
forgetting imposes perpetual loss of past information and
drives the estimator in the state of insufficient excitation
(t=460 s). Past that moment, the parameter estimate will not
converge until new excitation maneuvers are applied.

B. Experimental Results
Flight-tests were carried out on the NTU Athens, 2.7m

wingspan UnATRaP UAV (Figure 3).
IMU and GPS data were collected using COTS solutions,

while servo commands, engine RPM and airdata quantities
(airspeed, static pressure, angle-of-attack, angle-of-sideslip
and air temperature) were captured with tailor-made sensors
and systems. All data were recorded on-board in an embed-
ded computer, using the ROS framework to interface with
the various sensory peripherals.

The UAV was flown manually, to capture the full spectrum
of its dynamics, through a series of doublets and sine sweeps
for each control input. Flight data segments corresponding
to longitudinal and lateral excitation were used to assess the
convergence rate and the model fit to the measurements.
Figures 4 and 5 show that PCA-GTLS converges quickly
to the final solution and exhibits an almost excellent fit, in
terms of the coefficient of determination (R2).

To validate the parameter estimates, we reconstructed
synthetically the wind angles (α, β) of a different flight seg-
ment, using the estimated models. These are plotted against
the respective states from our sensor fusion solution which
served as ground truth (Figures 4 and 5). The prediction of
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Fig. 2: Parameter estimation with constant vs. variable forgetting factor.

the model is in very good agreement with the reference and
inside the error bounds (in gray). The mean error for α, β
was calculated to 0.55, 0.77 degrees respectively.

VII. CONCLUSIONS

In this work, the issue of aerodynamic parameters iden-
tification for small-scale fixed-wing UAVs, using uncertain
flight data was discussed. Since the errors in the regressor
measurements are not negligible, we advocated for the use
of the Total Least Squares (TLS) method to obtain optimal
estimates of the parameters. A novel sequential algorithm
suitable for real-time parameter tracking was provided, which
is endowed with a Variable Forgetting Factor and safe-
guarded against Insufficient System Excitation by employing
Principal Component Analysis. Since accurate estimation of
measurement uncertainty is required by the TLS method, a



Fig. 3: The UnATRaP experimental platform.
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Monte-Carlo approach was employed for the calculation of
the uncertainty of compound measurements, sampled from
uniform random variable inputs. Our algorithm was tested
against both simulated and real flight data with success.
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